AD-A241 911

91-13443

Significant of the second of the second of the second

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
Appendix V to the O&M Manual Longview Lake	3 RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	Embankment Criteria and Performance Report Sep 79 to Sep 90
Embankment Criteria and Performance Report	6. PERFORMING ONG. REPORT REABER
7. AUTHOR(*) Ms. Lori L. Lynch-Project Engineer Mr. Francke C. Walberg-Asst.Ch., Geotechnical Br. Mr. Robert G. Dimmitt-Ch., Dams & Foundations Sect.	8. CONTRACT OR GRANT NUMBER(*)
Dams and Foundations Section (CEMRK-ED-GD) Geotechnical Branch (CEMRK-ED-G) U.S. Army Corps of Engineers, Kansas City District 601 E. 12th Street: Kansas City. MO 64106	PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PB-2b and ERIIIO-2-1901 (31 Dec 1981)
11. CONTROLLING OFFICE NAME AND ADDRESS Civil Engineering Drafting Section (CEMRK-ED-CE) Computer Aided Drafting Branch (CEMRK-ED-C) U.S. Army Corps of Engineers, Kansas City District	12. REPORT DATE November 1990
U.S. Army Corps of Engineers, Kansas City District 601 E. 12th Street: Kansas City. MO 64106	13. NUMBER OF PAGES 333
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	18. SECURITY CLASS. (of this report) UNCLASSIFIED
	15a, DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Distribution in Accordance with ER 1110-2-1901, Paragraph 8, dated 31 December 1981 Distribution Statement "A"	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	m Report)
•	
18. SUPPLEMENTARY NOTES	
Control Determination: This report conforms to the catagories as set forth in AR 335-15 and under the	intent of the exempt report paragraps 7-2y of the AR.
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
This report provides the significant design, constrainformation which can be used by engineers to (1) f the project (2) reevaluate the embankment in the evocurs and (3) provide guidance for designing comparations.	amiliarize themselves with ent unsatisfactory performance

Best Available Copy

CEMRD-EP-C (CECW-EP-W/8 May 91) (10-1-7a) 1st End Mr. Galligan/sg/7306 SUBJECT: Longview Lake, Missouri, Embankment Criteria and Performance Report

DA, Missouri River Division, Corps of Engineers, P.O. Box 103, Downtown Station, Omaha, Nebraska 68101-0103 1 6 MAY 1991

FOR Commander, Kansas City District, ATTN: CEMRK-ED-GD

- For appropriate action.
- Please note the requested 30-day suspense.

FOR THE COMMANDER:

toporter.

*

JOSEPH J. GRASSO, P.E.

Acting Director, Engineering and

<u>_</u>___

11

Planning Directorate

CEMRK-ED-GD (CECW-EP-W/8 May 91) 1110-2-1150a 2d End Ms. Lynch/sj/FTS 867-5352 SUBJECT: Longview Lake Missouri, Embankment Criteria and Performance Report

DA, Kansas City District, Corps of Engineers, 700 Federal
Building, Kansas City, Missouri 64106-2896 11 June 1991
2 1 JUN 1991
THRU Commander, Missouri River Division, ATTN: CHMRD BP C

FOR Commander, Directorate of Civil Works, ATTN: CECW-EP-W

The following are like-numbered responses to CECW-EP-W comments provided in the memorandum dated 8 May 1991 referenced in the 1st End to Longview Lake, Missouri, Emban ment Criteria and Performance Report.

- a. The impervious blanket was constructed on the upstream right abutment to control seepage at the abutment. The majority of the seepage was expected to occur through the highly jointed Bethany Falls limestone which exists on both abutments. An impervious blanket was required for the right abutment since the upstream bedrock was exposed. A clay blanket was not necessary for the left abutment because the upstream bedrock is covered with overburden which acts as a natural clay blanket. For a complete description of the operation and performance of the abutments see paragraphs 7-05, 9-01c, and 9-01d.
- b. Excavation details and foundation treatment for the abutments are discussed in more detail in the Longview Lake Construction Foundation Report dated February 1986.
- c. A banded riprap design was used on the upstream slope to minimize the amount of stone protection required. Flatter grassed slopes (1 on 50) were also used between the upstream riprap zones. The riprap extends from elevation 878 to 898 corresponding to the zone of most frequent pool level roughly the 10 year drawdown and 10 year flood and elevation 915 to 925. The information used to determine the stone protection zones is provided on plate 32.
- d. Reference paragraph 8-04f. Construction details for the upstream impervious blanket are provided on plate 30.

CEMRK-ED-GD

SUBJECT: Longview Lake Missouri, Embankment Criteria and Performance Report

e. The 10 abandoned open tube piezometers were cut off slightly below the ground, filled with grout and capped.

FOR THE COMMANDER:

AUL D. BARBER hief, Engineering Division

CECW-EP-W (CECW-EP-W/8 May 1991) 3rd End WALLACE/tf/(202)272-8890 SUBJECT: Longview Lake Missouri Embankment Criteria and Performance Report

2 0 AUG 1991

HQ, U.S. Army Corps of Engineers, Washington, DC 20314-1000 FOR Commander, Missouri River Division, ATTN: CEMRD-EP-C

The responses provided in the preceding endorsement satisfactorily response to the concerns set forth in the basic letter.

FOR THE DIRECTOR OF CIVIL WORKS:

I

3.00 M

AJOHN A. MCDHERSON

Acting Chief, Engineering Division

Directorate of Civil Works

100)

E STATE OF THE PARTY OF THE PAR

CEMRD-EP-C (CECW-EP-W/8 May 91) (11-2-240a) 4th End Mr. Galligan/sg/7306 SUBJECT: Longview Lake Missouri Embankment Criteria and Performance Report

DA, Missouri River Division, Corps of Engineers, P.O. Box 103, Downtown Station, Qmaha, Nebraska 68101-0103 28 August 1991

FOR Commander, Kansas City District, ATTN: CEMRK-ED-GD

Forwarded for your information.

FOR THE COMMANDER:

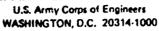
, w,

.

٠<u>٠</u> ,

;

R. HARVE WIETHOP, P.E.


Chief, Cost & Gen. Engrg. Division Engineering and Planning Directorate

Accession to:

Note the second of the second

ODPY INSPECTED 4

DEPARTMENT OF THE ARMY

, ×,

REPLY TO ATTENTION OF:

CECW-EP-W

08 MAY 1931

MEMORANDUM FOR Commander Missouri River Division, ATTN: CEMRD-EP-C SUBJECT: Longview Lake, Missouri, Embankment Criteria and Performance Report

- 1. Reference memorandum CEMRK-ED-GD, 27 February 1991, subject as above with CEMRD-EP-C, 21 March 1991, first endorsement thereon.
- 2. The following comments on the subject report are furnished for action. Request response within 30 days as to the disposition of these comments.
- 3. Geotechnical concerns.
- a. Paragraph 4-01.b. Documentation should be provided to confirm the need for the impervious blanket.
- b. Paragraph 4-02.c. Design details respecting the abutment treatment should be provided.
- c. Paragraph 4-04, subparagraph 4. Clarify what slope details were selected in order to minimize slope protection requirements.
- d. Paragraph 5-02.c. Include construction details such as thickness, zones and filters for the upstream impervious blanket.
- e. Paragraph 7.02.a. The abandonment procedures for the ten open tube piezometers should be provided.

FOR THE DIRECTOR OF CIVIL WORKS:

CTOHN & MOTHERSON

Acting Chief, Engineering Division

Directorate of Civil Works

OPERATION AND MAINTENANCE MANUAL LONGVIEW LAKE LITTLE BLUE RIVER, MISSOURI

APPENDIX V

EMBANKMENT CRITERIA AND PERFORMANCE REPORT

FEBRUARY 1991

DEPARTMENT OF THE ARMY
Kansas City District, Corps of Engineers
Kansas City, Missouri

OPERATION AND MAINTENANCE MANUAL LONGVIEW LAKE LITTLE BLUE RIVER BASIN LITTLE BLUE RIVER, MISSOURI

APPENDIX V EMBANKMENT CRITERIA AND PERFORMANCE REPORT

TABLE OF CONTENT

Paragraph	<u>Title</u>	Page
	Pertinent Data	V-A
	CHAPTER 1	
	INTRODUCTION	
1-01 1-02 1-03	Purpose and Scope of Report Project Purpose Project Authorization	V-1-1 V-1-1 V-1-1
	CHAPTER 2	
	PROJECT DESCRIPTION	
2-01 2-02 2-03 2-04 2-05 2-06	Project Location Dam Description Spillway Outlet Works Construction History Lake Filling	V-2-1 V-2-1 V-2-1 V-2-1 V-2-1 V-2-2
	CHAPTER 3	
	GEOLOGY	
3-01 3-02 3-03 3-04 3-05	Regional Geology and Physiography Site Geology Description of Overburden Bedrock Subsurface Investigation Prior to Construction	V-3-1 V-3-1 V-3-1 V-3-1 V-3-2
	CHAPTER 4	
	FOUNDATION AND EMBANKMENT	
4-01 4-02 4-03 4-04 4-05	General Foundation Treatment Embankment Materials Stone Protection Settlement	V-4-1 V-4-2 V-4-3 V-4-6 V-4-7

Paragraph	<u>Title</u>	Page
	CHAPTER 5	
	SEEPAGE CONTROL	
5-01	Through Seepage	V-5-1
5-02	Underseepage	V-5-1
	CHAPTER 6	
	SLOPE STABILITY	
6-01	General	V-6-1
6-02	Design Strength Testing	V-6-1
6-03	Selection of Design Strengths	V-6-2
6-04	Design Stability Analysis	V-6-3
6-05	Stage II Stability Analysis	V-6-4
	CHAPTER 7	
	INSTRUMENTATION	
7-01	General	V-7-1
7-02	Piezometers	V-7-1
7-03	Embankment Piezometric Devices	V-7-4
7-04	Foundation Piezometric Devices	V-7-5
7-05	Abutment Piezometric Devices	V-7-5
7-06	Inclinometers	V-7-6
7-07	Alignment Monuments	V-7-7
7-08	Foundation Settlement Plates	V-7-8
7-09	Crest Settlement Monuments	V-7-8
7-10	Top of Dam Profiles	V-7-9
	CHAPTER 8	
	CONSTRUCTION NOTES	
8-01	General	V-8-1
8-02	Stage I Contract	V-8-1
8-03	Stage I Embankment Analysis	V-8-9
8-04	Stage II Contract	V-8-10
8-05	Embankment Materials Inspection and Testing	V-8-15
	CHAPTER 9	
	OPERATIONAL NOTES	
9-01	Embankment	V-9-1
9-02	Emergency Rock Stockpile	V-9-2

ENCLOSURE

Encl No.	Subject
1	Analysis of Stage I Embankment
2	Gas Sample Analysis
3	Water Sample Analysis

PHOTOGRAPHS

Photo No.

Ķ,

Title

1. March 1990. Overview of completed embankment.

CONSTRUCTION EQUIPMENT

- 2. 1983. Two Caterpillar D-9s loading Cat 631 scrapers in upstream valley borrow area.
- 3. 09 October 1981. Cat 5310 scraper.
- 4. 26 July 1983. Cat D-9H compacting haul road ramp with tandem sheepsfoot roller.
- 5. 10 July 1983. Compacting impervious fill around sump in cutoff trench with a "BARCO" gas powered compactor.
- 6. 06 July 1983. Spreader box mounted on a Cat D3 used for placing the 6-foot wide pervious drain.
- 7. June 1980. Raygo "Rascal" 410-A 5 ton vibratory roller used to compact pervious fill.
- 8. 07 June 1983. "Wacker" DVU4001 small vibratory plate compactor used to compact pervious fill in restricted areas.
- 9. 07 May 1981. Small 4 wheel "Wacker" vibratory roller.
- 10. 11 June 1981. Backhoe mounted vibratory plate used to compact pervious fill along the right side of the conduit.
- 11. 18 September 1981. Wheel rolling upstream cutoff trench contact with left abutment Sni-A-Bar Limestone with Cat 920 front end loader.
- 12. 18 July 1983. Record control sample being taken.

STAGE I EMBANKMENT CONSTRUCTION

- 13. 05 March 1980. Looking west at slide on left side of outlet works excavation. Slide occurred on 18 November 1979.
- 14. 29 May 1980. Curtain grouting in cutoff trench.
- 15. July 1980. Removal of unacceptably wet impervious fill material and excavation for placement of pervious on the downstream side of the cutoff trench.
- 16. July 1980. Impervious and pervious fill placed in cutoff trench against right abutment.
- 17. 21 July 1980. Outlet works oges section and 45 degree bend of twin sewer conduits.
- 18. 14 August 1980. Stair stepped surface of heavily fractured Middle Creek limestone of right abutment after excavation and cleaning.
- 19. 14 August 1980. Placement of dental concrete and slush grout to seal the surface of Middle Creek limestone.
- 20. 21 October 1980. Overview of fill placement, conduit construction, and left abutment cutoff trench.

PHOTOGRAPHS

Photo No.

Title

- 21. 06 May 1981. Selective loading with rock rake of left abutment Sni-A-Bar limestone to make rockfill.
- 22. 21 May 1981. Overview of conduit backfill, fill placement, and right abutment from left abutment.
- 21 July 1981. First lift of impervious fill being placed over pervious on upstream side of bend in twin sewer conduits at approximate outlet works station 54+00.
- 24. 18 September 1982. Left abutment and cutoff trench.
- 25. 21 October 1982. Downstream impervious stockpile.
- 26. 16 November 1982. Stage I embankment investigation. Lowering inspection casing into 30 inch diameter observation hole (OH).
- November 1982. Sample showing typical smooth surface texture, probably caused by pumping action of loaded scraper.
- 28. November 1982. Sample showing typical raindrop-type texture, probably mechanically induced from construction equipment.
- 29. November 1982. First wet area encountered in OH-1.
- November 1982. One foot above area in previous photo; exposed boundary layer with the upper material moist and seepage exiting from lower material.
- 31. November 1982. Wet area encountered in OH-1.
- 32. 24 November 1982. End of Stage I construction. Aerial view of construction.
- 33. 24 November 1982. End of Stage I construction. Aerial view of construction.

STAGE II EMBANKMENT CONSTRUCTION

- 34. January 1983. Ignition of gas from PPE99-9.
- 35. 10 June 1983. Impervious blanket against upstream right abutment.
- 36. 17 June 1983. Completed outlet works and stilling basin.
- 37. 06 July 1983. Aerial view of embankment, cofferdam, and closure section construction.
- 06 July 1983. Aerial view of embankment and closure section 38. construction.
- 39. 09 July 1983. Cleanup of cutoff trench and impervious placement in closure section.
- 40. 12 July 1983. Pervious placed at downstream edge of cutoff trench in closure section.
- 41. 18 July 1983. View of closure section showing pervious placement at downstream side of cutoff trench and in old river and diversion channels.
- 42. 22 July 1983. Pervious blanket placed over old river channel in closure section.
- September 1983. Closure section embankment construction.
- 44. 13 September 1983. Downstream right abutment.45. 13 September 1983. Upstream right abutment.
- 46. 26 October 1983. Fill placement in closure section.
- 47. 24 May 1984. Rockfill in clay blanket area on upstream right abutment.

PHOTOGRAPHS

Photo No.

Title

- 48. May 1984. Aerial view of embankment after completion of closure section fill placement.
- 49. May 1984. Aerial view of embankment, east borrow and west borrow.
- 50. May 1984. Aerial view of borrow areas from south of the west borrow area.
- 51. 16 July 1984. Upstream and downstream random zone fill placement.
- 52. 18 September 1984. Upstream slope before final grading.
- 53. 26 November 1984. Downstream left abutment grouted gutter construction.
- 54. 25 March 1985. Front end loaders placing riprap on upstream face of embankment.
- 55. 26 March 1985. Dressing of riprap adjacent to bridge abutment using large backhoe.
- 56. 26 March 1985. Completed upstream slope protection.
- 57. 23 May 1985. Completed slope protection at crest of embankment.
- 58. September 1985. Completed upstream slope from tower bridge.
- 59. September 1985. Completed downstream right abutment.
- 60. 24 September 1985. Eight foot flat bottom toe ditch.
- 61. 24 September 1985. "Enka-mat" erosion control fabric lined ditch above grouted gutter on downstream left abutment.
- 62. 05 March 1986. Downstream right abutment contact showing cleared sewer line alignment at upper left.
- 63. 22 April 1986. Closed expansion joint and tilted rocker due to movement of tower bridge abutment.
- 64. April 1986. Crown crack and leakage along left wall at monolith joint between tower and conduit.
- 65. 19 May 1986. Installation of finger drains into pervious blanket at embankment toe.
- 66. 19 May 1986. Completed finger drain installation at embankment toe.
- 67. 10 July 1986. Completed french drain installed in upstream right abutment clay blanket to intercept seepage from limestone.
- 68. 18 July 1986. Aerial view of completed embankment.
- 69. 19 September 1986. Upstream slope protection with pool at multipurpose elevation 891.
- 70. 04 October 1986. Upstream slope with pool at elevation 897.
- 71. 07 April 1987. Left abutment slope protection with the pool at multipurpose elevation 891.
- 72. 07 April 1987. Completed upstream right abutment clay blanket area.
- 73. 19 September 1986. Downstream left abutment contact and stilling basin.
- 74. 07 April 1987. Completed downstream slope.
- 75. March 1990. Completed emergency rock stockpile on downstream left abutment.

LONGVIEW EMBANKMENT CRITERIA REPORT

PLATE LIST

Plate No.	<u>Title</u>	File No.
1	LOCATION AND VICINITY	RBL-3-1401
2	GENERAL PLAN	RBL-3-1402
3	PLAN OF EXPLORATION BORINGS AND	
	PROFILE LINES	RBL-3-1403
4	DAM SITE AREA PLAN OF EXPLORATION	REL-3-1404
5	OUTLET WORKS PLAN OF EXPLORATION	RBL-3-1405
6	GENERAL GEOLOGIC COLUMN AND LEGEND	RBL-3-1406
7	PROFILE ALONG DAM AXIS: LOGS OF	22 2 1/07
	EXPLORATIONS	RBL-3-1407
8	OUTLET WORKS, APPROACH, & OUTLET CHANNELS	nn: 2 1// 0
•	LOGS AND PLAN OF EXPLORATIONS	RBL-3-14C8
9	OUTLET WORKS, APPROACH, & OUTLET CHANNELS	nnt 2 1 /- 00
10	GEOLOGIC SECTIONS AND DETACHED BORINGS	RBL-3-1409
10	SPILLWAY PROFILE AND SECTIONS	RBL-3-1410 RBL-3-1411
11 12	GENERAL PLAN OF EXCAVATION	RBL-3-1411
13	OUTLET WORKS, PLAN OF EXCAVATION APPROACH STRUCTURES EXCAVATION, PLAN,	KDL-3-1412
13	PROFILE, AND SECTIONS	RBL-3-1413
14	CURTAIN GROUTING PLAN AND PROFILE RIGHT	7-1413
14	ABUTMENT	RBL-3-1414
15	CURTAIN GROUTING PLAN AND PROFILE VALLEY	רודי כיינטא
17	AND CONDUIT FOUNDATION	RBL-3-1415
16	CURTAIN GROUTING PLAN AND PROFILE LEFT	RDU J 1413
10	ABUTMENT	RBL-3-1416
17	EMBANKMENT AT COMPLETION OF STAGE I	RBL-3-1417
18	LEFT ABUTMENT AND EMBANKMENT TOPOGRAPHY	RBL-3-1418
19	DIVERSION AND CLOSURE: PLANS AND SECTIONS	
20	EMBANKMENT PLAN AND ALIGNMENT DATA	RBL-3-1420
21	DAM AXIS PROFILE AND MISC SECTIONS AND	100 5 1420
	DETAILS	RBL-3-1421
22		RBL-3-1422
23	TYPICAL EMBANKMENT SECTIONS 1 OF 4 TYPICAL EMBANKMENT SECTIONS 2 OF 4 TYPICAL EMBANKMENT SECTIONS 3 OF 4	RBL-3-1423
24	TYPICAL EMBANKMENT SECTIONS 3 OF 4	RBL-3-1424
25	TYPICAL EMBANKMENT SECTIONS 4 OF 4	RBL-3-1425
26	TOP OF DAM AND SLOPE PROTECTION DETAILS	RBL-3-1426
27	EMBANKMENT DRAINAGE SCHEDULE SECTIONS,	••••
	& DETAILS	RBL-3-1427
28	STILLING BASIN: PLAN, PROFILE, SECTIONS	
	AND DETAILS	RBL-3-1428
29	RIGHT ABUTMENT SECTION AND PLAN OF	
	EXCAVATION	RBL-3-1429
30	RIGHT ABUTMENT UPSTREAM IMPERVIOUS	
	CLAY BLANKET PLAN AND SECTIONS	RBL-3-1430
31	ELM AVENUE DIKE, ACCESS LANE AND	
	PIPE GATE DETAILS	RBL-3-1431
32	SLOPE PROTECTION STUDY	RBL-3-1432
33	SERVICE BRIDGE PLAN AND ELEVATION	RBL-3-1433
34	SERVICE BRIDGE MISCELLANEOUS DETAILS	RBL-3-1434
34A	SERVICE RRIDGE ALTERATIONS	PRI - 3-1701

Plate No.	<u>Title</u>	File No.
35	OBSERVATION DEVICES PLAN AND	
	SCHEDULE 1 OF 2	RBL-3-1435
36	OBSERVATION DEVICES: PLAN AND	
	SCHEDULE 2 OF 2	RBL-3-1436
37	INSTRUMENTATION CROSS SECTIONS 1 OF 5	RBL-3-1437
38	INSTRUMENTATION CROSS SECTIONS 2 OF 5	RBL-3-1438
39	- ·	RBL-3-1439
40		RBL-3-1440
41	INSTRUMENTATION CROSS SECTIONS 5 OF 5	RBL-3-1441
42	INSTRUMENTATION INSTALLATION DETAILS 1 OF 2	RBL-3-1442
43	EMBANKMENT OBSERVATION DEVICES:	
	INSTALLATION DETAILS 2 OF 2	RBL-3-1443
43A	INCLINOMETER DETAILS	RBL-3-1696
44	PORE PRESSURE CONTOURS (JANUARY 1987)	
	POOL ELEVATION 891.2	RBL-3-1444
45	PRECIPITATION AND LAKE FILLING RATE	RBL-3-1445
46	LIQUID LIMIT ZONE CROSS SECTIONS	RBL-3-1446
47	PLAN OF RECORD CONTROL SAMPLE LOCATIONS	RBL-3-1447
48	PROFILE OF RECORD CONTROL SAMPLE	
	LOCATIONS	RBL-3-1448
49	PLAN OF BORING SAMPLE LOCATIONS	RBL-3-1449
50	RECORD CONTROL SAMPLE SCHEDULE	RBL-3-1450
51	LABORATORY SOILS TESTING LOG	RBL-3-1451
52	TEST DATA SUMMARIES LIQUID LIMIT 55	
	IMPERVIOUS ZONE STAGE I	RBL-3-1452
53	TEST DATA SUMMARIES LIQUID LIMIT 55	
	IMPERVIOUS ZONE STAGE I	RBL-3-1453
54	SHEAR TEST SUMMARIES LIQUID LIMIT 55	
	IMPERVIOUS ZONE STAGE I	RBL-3-1454
55	TEST DATA SUMMARIES LIQUID LIMIT 55	
	IMPERVIOUS ZONE STAGE II	RBL-3-1455
56	SHEAR TEST SUMMARIES LIQUID LIMIT 55	
	IMPERVIOUS ZONE STAGE II	RBL-3-1456
57	TEST DATA SUMMARIES LIQUID LIMIT 60	0 1/57
	RANDOM ZONE STAGE I	RBL-3-1457
58	SHEAR TEST SUMMARIES LIQUID LIMIT 60	
	RANDOM ZONE STAGE I	RBL-3-1458
59	TEST DATA SUMMARIES LIQUID LIMIT 60	0 1/50
	IMPERVIOUS ZONE STAGE II	RBL-3-1459
60	SHEAR TEST SUMMARIES LIQUID LIMIT 60	2 1//2
	IMPERVIOUS ZONE STAGE II	RBL-3-1460
61	TEST DATA SUMMARIES LIQUID LIMIT 60	nn: 2 1//1
	RANDOM ZONE STAGE II	RBL-3-1461
62	SHEAR TEST SUMMARIES LIQUID LIMIT 60	2 1/62
	RANDOM ZONE STAGE II	RBL-3-1462
63	TEST DATA SUMMARIES LIQUID LIMIT 65	
	IMPERVIOUS ZONE STAGE II	RBL-3-1463
64	SHEAR TEST SUMMARIES LIQUID LIMIT 65	ane a 11/1
	IMPERVIOUS ZONE STAGE II	RBL-3-1464

Plate No.	<u>Title</u>	File No.
65	TEST DATA SUMMARIES LIQUID LIMIT 65	
	RANDOM ZONE STAGE II	RBL-3-1465
66	SHEAR TEST SUMMARIES LIQUID LIMIT 65	
_	RANDOM ZONE STAGE II	RBL-3-1466
67	TEST DATA SUMMARIES LIQUID LIMIT 70	
	RANDOM ZONE STAGE II	RBL-3-1467
68	SHEAR TEST SUMMARIES LIQUID LIMIT 70	m. n. 1/40
	RANDOM ZONE STAGE IIR	BL-3-1468
69	TEST DATA SUMMARIES UNSPECIFIED LIQUID	nnr 2 1460
70	LIMIT BERM ZONE STAGE II	RBL-3-1469
70	SHEAR TEST SUMMARIES UNSPECIFIED LIQUID LIMIT BERM ZONE STAGE II	RBL-3-1470
71	LIQUID LIMIT 55 IMPERVIOUS ZONE STAGE I	KBL-3-1470
71	DENSITY AND COMPACTION TEST SUMMARIES	RBL-3-1471
72	LIQUID LIMIT 55 IMPERVIOUS ZONE STAGE II	NDD 3 14/1
	DENSITY AND COMPACTION TEST SUMMARIES	RBL-3-1472
73	LIQUID LIMIT 60 IMPERVIOUS ZONE STAGE II	NDD 3 1474
, ,	DENSITY AND COMPACTION TEST SUMMARIES	RBL-3-1473
74	LIQUID LIMIT 60 RANDOM ZONE STAGES I AND II	
	DENSITY AND COMPACTION TEST SUMMARIES	RBL-3-1474
75	LIQUID LIMIT 65 IMPERVIOUS ZONE STAGE II	
	DENSITY AND COMPACTION TEST SUMMARIES	RBL-3-1475
76	LIQUID LIMIT 65 RANDOM ZONE STAGE II	
	DENSITY AND COMPACTION TEST SUMMARIES	RBL-3-1476
77	LIQUID LIMIT 70 RANDOM ZONE STAGE II	
	DENSITY AND COMPACTION TEST SUMMARIES	RBL-3-1477
78	BERM ZONE (NO SPECIFIED LIQUID LIMIT)	
	STAGE II DENSITY AND COMPACTION TEST	
	SUMMARIES	RBL-3-1478
79	COMPACTION TEST SUMMARIES STAGE I	RBL-3-1479
80	COMPACTION TEST SUMMARIES STAGE I	RBL-3-1480
81	COMPACTION TEST SUMMAIRES STAGE I	RBL-3-1481
82	COMPACTION TEST SUMMARIES STAGE I	RBL-3-1482
83	COMPACTION TEST DATA SUMMARY STAGE II	RBL-3-1483
84	COMPACTION TEST SUMMARIES STAGE II	RBL-3-1484
85	COMPACTION TEST SUMMARIES STAGE II	RBL-3-1485
86	DERIVATION OF STABILITY EQUATIONS	RBL-3-1564
86A	TEST DATA SUMMARY COMPACTED EMBANKMENT MATERIAL Q-TESTS AND ATTERBERG LIMIT	DD- 2 1/0/
86B	TESTS TEST DATA SUMMARY COMPACTED EMBANKMENT	RBL-3-1686
OUB	MATERIAL R-TESTS AND ATTERBERG LIMIT	
	TESTS	RBL-3-1687
86C	TEST DATA SUMMARY COMPACTED EMBANKMENT	KBL 3 1007
	MATERIAL S-TESTS AND ATTERBERG LIMIT	
	TESTS	RBL-3-1688
86D	TEST DATA SUMMARY COMPACTED EMBANKMENT	1,55 5 1000
	COMPACTION CURVES GRADATIONS AND	
	ACTIVITY DATA	RB1,-3-1689

Plate No.	<u>Title</u>	File No.
86E	TEST DATA SUMMARY UNDISTURBED FOUNDATION OVERBURDEN Q-TESTS	RBL-3-1690
86F	TEST DATA SUMMARY UNDISTURBED FOUNDATION	0 1/01
0/0	OVERBURDEN R-TESTS	RBL-3-1691
86G	TEST DATA SUMMARY UNDISTURBED FOUNDATION OVERBURDEN S-TESTS DATA	RBL-3-1692
86H	TEST DATA SUMMARY UNDISTURBED FOUNDATION	
	OVERBURDEN S-TEST, PLOTS	RBL-3-1693
861	TEST DATA SUMMARY FOUNDATION OVERBURDEN	
	CONSOLIDATION TESTS	RBL-3-1694
86J	TEST DATA SUMMARY FOUNDATION SHALES	RBL-3-1695
87	TYPICAL STABILITY ANALYSIS END OF	
	CONSTRUCTION AND PARTIAL POOL CASE	RBL-3-1565
88	TYPICAL STABILITY ANALYSIS RAPID	
	DRAWDOWN AND STEADY SEEPAGE	RBL-3-1566
89	EMBANKMENT STABILITY ANALYSIS SUMMARY	0 .567
•	VALLEY SECTION	RBL-3-1567
90	EMBANKMENT STABILITY ANALYSIS SUMMARY	2 15/0
	CONDUIT SECTION	RBL-3-1568
91	EMBANKMENT STABILITY ANALYSIS SUMMARY	DD1 3 1560
00	COFFERDAM	RBL-3-1569
92	STAGE II EMBANKMENT STABILITY ANALYSIS	RBL-3-1486
93	SUMMARY CONDUIT SECTION	KPF-2-1400
73	EMBANKMENT MATERIAL PLACEMENT REQUIREMENTS AND QUANTITIES	RBL-3-1487
94	TOP OF DAM PROFILE PLOTS	RBL-3-1570
95	CREST SETTLEMENT MONUMENTS PLOTS	RBL-3-1571
96	CREST SETTLEMENT MONUMENTS PLOTS	RBL-3-1572
97	SETTLEMENT PLATE DATA PLOTS SPPF 91-1	KDE 3 13/2
**	AND SPPF 93-7	RBL-3-1573
98	ALIGNMENT MONUMENT HORIZONTAL PROFILE	KDM 3 13/3
,0	ORIGINAL SURVEY BASE LINES	
	LINES "A" AND "B" SUMMARY	RBL-3-1574
99	ALIGNMENT MONUMENTS HORIZONTAL AND VERTICAL	
	DATA PLOTS MONUMENTS A-4, A-5, AND A-6	RBL-3-1575
100	ALIGNMENT MONUMENTS HORIZONTAL AND VERTICAL	
	DATA PLOTS MONUMENTS B-1,B-2, AND B-3	RBL-3-1576
101	PIEZOMETER PLOTS OPEN TUBE PZ PPF 84-1	RBL-3-1577
102	PIEZOMETER PLOTS OPEN TUBE PZ PPF 86-1A	RBL-3-1578
103	PIEZOMETER PLOTS OPEN TUBE PZ PPF 87-3	RBL-3-1579
104	PIEZOMETER PLOTS OPEN TUBE PZ PPF 88-2	RBL-3-1580
105	PIEZOMETER PLOTS OPEN TUBE PZ PPF 88-3	RBL-3-1581
106	PIEZOMETER PLOTS OPEN TUBE PZ PZE 90-2	RBL-3-1582
107	PIEZOMETER PLOTS OPEN TUBE PZ PPE 92-1	
	1 OF 2	RBL-3-1583
108	PIEZOMETER PLOTS OPEN TUBE PZ PPE 92-1	
	2 OF 2	RBL-3-1584
109	PIEZOMETER PLOT 2" OPEN TUBE PVC PPE 92-2	
	1 OF 2	RBI3-1585

1

Plate No.	Title	File No.
110	PIEZOMETER PLOT 2" OPEN TUBE PVC PPE 92-2	
111	2 OF 2	RBL-3-1586
111	PIEZOMETER PLOTS PNEUMATIC PZ PPE 94-1 1 OF 2	RBL-3-1587
112	PIEZOMETER PLOTS PNEUMATIC PZ PPE 94-1 2 OF 2	RBL-3-1588
113	PIEZOMETER PLOTS OPEN TUBE PZ PPF 99-3 2 OF 2	RBL-3-1589
114	PIEZOMETER PLOTS OPEN TUBE PZ PPF 99-4 1 OF 2	RBL-3-1590
115	PIEZOMETER PLOTS OPEN TUBE PZ PPF 99-4	
116	2 OF 2 PIEZOMETER PLOTS PNEUMATIC PZ PPE 99-8	RBL-3-1680
117	1 OF 2 PIEZOMETER PLOTS PNEUMATIC PZ PPE 99-8	RBL-3-1681
118	2 OF 2 PIEZOMETER PLOTS PNEUMATIC PZ PPE 99-11	RBL-3-1682
-	1 OF 2	RBL-3-1683
119	PIEZOMETER PLOTS PNEUMATIC PZ PPE 99-11 2 OF 2	RBL-3-1684
120	PIEZOMETER PLOTS OPEN TUBE PZ W-6	RBL-3-1685
121	INCLINOMETER DISPLACEMENTS 1-99-1	RBL-3-1697
122	INCLINOMETER DATA PLOTS I-99-1 AND	RDB 3 1077
	I-99-2	RBL-3-1698
123	INCLINOMETER DISPLACEMENTS I-99-3	RBL-3-1699
124	INCLINOMETER DATA PLOTS I-99-3 AND I-97-1	RBL-3-1700
	SUPPLEMENT A	
Flate No.	Title	File No.
A 3	II SE TURBRUTOUR CHACR I PROOFF COMPANY	
Al	LL 55 IMPERVIOUS STAGE I RECORD CONTROL R. R. AND GRADATION TESTS - 1 OF 16	RBL-3-1488
A2	LL_55 IMPERVIOUS STAGE I RECORD CONTROL	
A3	R, R, AND GRADATION TESTS - 2 OF 16 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1489
	R, R, AND GRADATION TESTS - 3 OF 16	RBL-3-1490
A4	LL 55 IMPERVIOUS STAGE I RECORD CONTROL R, R, AND GRADATION TESL - 4 OF 16	RBL-3-1491
A5	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
A6	R, R, AND GRADATION TESTS - 5 OF 16 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1492
A 7	R, R, AND GRADATION TESTS - 6 OF 16 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1493
	R, R, AND GRADATION TESTS - 7 OF 16	RBL-3-1494
8A	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	nn: 3 :/05
A9	R, R, AND GRADATION TESTS - 8 OF 16 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1495
	R, R, AND GRADATION TESTS - 9 OF 16	RBL-3-1496

SUPPLEMENT A

Plate No.	<u>Title</u>	File No.
A10	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
	R. R. AND GRADATION TESTS - 10 OF 16	RBL-3-1497
Al l	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
	R, R, AND GRADATION TESTS - 11 OF 16	RBL-3-1498
A12	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
	R, R, AND GRADATION TESTS - 12 OF 16	RBL-3-1499
A13	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
	R, R, AND GRADATION TESTS - 13 OF 16	RBL-3-1500
A14	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
	R, R, AND GRADATION TESTS - 14 OF 16	RBL-3-1501
A15	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
	R, R, AND GRADATION TESTS - 15 OF 16	RBL-3-1502
A16	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
	R, R, AND GRADATION TESTS - 16 OF 16	RBL-3-1503
A17	LL 55 IMPERVIOUS STAGE II RECORD CONTROL	
	R, R, AND GRADATION TESTS - 1 OF 3	RBL-3-1504
A18	LL 55 IMPERVIOUS STAGE II RECORD CONTROL	
	R, R, AND GRADATION TESTS - 2 OF 3	RBL-3-1505
A19	LL 55 IMPERVIOUS STAGE II RECORD CONTROL	
	R, R, AND GRADATION TESTS - 3 OF 3	RBL-3-1506
A20	LL 60 RANDOM STAGE I RECORD CONTROL R, R,	
	AND GRADATION TESTS	RBL-3-1507
A21	LL 60 IMPERVIOUS STAGE II RECORD CONTROL	NOG 3 130.
134-4	R, R, AND GRADATION TESTS - 1 OF 3	RBL-3-1508
A22	LL 60 IMPERVIOUS STAGE II RECORD CONTROL	ND2 3 1300
74.6	R, R, AND GRADATION TESTS - 2 OF 3	RBL-3-1509
A23	LL 60 IMPERVIOUS STAGE II RECORD CONTROL	KDB 3 1302
847	R, R, AND GRADATION TESTS - 3 OF 3	RBL-3-1510
A24	LL 60 RANDOM STAGE II RECORD CONTROL R,	KIN J IJI
RZ7	R, AND GRADATION TESTS - 1 OF 4	RBL-3-1511
A25	LL 60 RANDOM STAGE II RECORD CONTROL R,	KDG J IJI
WE?		RBL-3-1512
A26	R, AND GRADATION TESTS - 2 OF 4	NBU-3-1311
A20	LL 60 RANDOM STAGE II RECORD CONTROL R,	RBL-3-1513
A 2 7	R, AND GRADATION TESTS - 3 OF 4	KDL-J-131.
A27	LL 60 RANDOM STAGE II RECORD CONTROL R,	nnt21 51 /
420	R, AND GRADATION TESTS - 4 OF 4	RBL-3-1514
A28	LL 65 IMPERVIOUS STAGE II RECORD CONTROL	DDY 2 1516
.00	R, R, AND GRADATION TESTS - 1 OF 5	RBL-3-1515
A29	LL 65 IMPERVIOUS STAGE II RECORD CONTROL	nnt 2 151/
	R, R, AND GRADATION TESTS - 2 OF 5	RBL-3-1516
A30	LL 65 IMPERVIOUS STAGE II RECORD CONTROL	nny 0 1513
	R, R, AND GRADATION TESTS - 3 OF 5	RBL-3-1517
A31	LL 65 IMPERVIOUS STAGE II RECORD CONTROL	0 161/
	R, R, AND GRADATION TESTS - 4 OF 5	RBL-3-1518
A32	LL 65 IMPERVIOUS STAGE II RECORD CONTROL	0 1614
	R, R, AND GRADATION TESTS - 5 OF 5	RBL-3-1519
A33	LL 65 RANDOM STAGE II RECORD CONTROL R,	
. • 4	R, AND GRADATION TESTS - 1 OF 3	RBL-3-152
A34	LL 65 R'NDOM STAGE II RECORD CONTROL R,	
	R. AND GRADATION TESTS - 2 OF 3	RBL-3-152

SUPPLEMENT A CONT'D

Plate No.	Title	File No.
A35	LL 65 RANDOM STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 3 OF 3	RBL-3-1522
A36	LL 70 RANDOM STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 1 OF 8	RBL-3-1523
A37	LL 70 RANDOM STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 2 OF 8	RBL-3-1524
A38	LL 70 RANDOM STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 3 OF 8	RBL-3-1525
A39	LL 70 RANDOM STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 4 OF 8	RBL-3-1526
A40	LL 70 RANDOM STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 5 OF 8	RBL-3-1527
A41	LL 70 RANDOM STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 6 OF 8	RBL-3-1528
A42	LL 70 RANDOM STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 7 OF 8	RBL-3-1529
A43	LL 70 RANDOM STAGE II RECORD CONTROL R, 3, AND GRADATION TESTS - 8 OF 8	RBL-3-1530
A44	BERM ZONE STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 1 OF 4	RBL-3-1531
A45	BERM ZONE STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 2 OF 4	RBL-3-1532
A46 A47	BERM ZONE STAGE II RECORD CONTROL R, R, AND GRADATION TESTS - 3 OF 4 BERM ZONE STAGE II RECORD CONTROL R, R,	RBL-3-1533
	AND GRADATION TESTS - 4 OF 4 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1534
A49	Q & S TESTS - 1 OF 8 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1535
A50	Q & S TESTS - 2 OF 8 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1536
A51	Q & S TESTS - 3 OF 8 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1537
A52	Q & S TESTS - 4 OF 8 LL 55 IMPERVIOUS STAGE I RECORD CONTRUL	RBL-3-1538
A53	Q & S TESTS - 5 OF 8 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1539
A54	Q & S TESTS - 6 OF 8 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1540
A55	Q & S TESTS - 7 OF 8 LL 55 IMPERVIOUS STAGE I RECORD CONTROL	RBL-3-1541
A56	Q & S TESTS - 8 OF 8 LL 55 IMPERVIOUS STAGE II RECORD COMTROL	RBL-3-1542
A57	Q & S TESTS LL 60 RANDOM STAGE I RECORD CONTROL	RBL-3-1543
A58	Q & S TESTS LL 60 IMPERVIOUS STAGE II RECORD CONTROL	RBL-3-1544
A59	Q & S TESTS LL 60 RANDOM STAGE II RECORD CONTROL	RBL-3-1545
	Q & S TESTS	RBL-3-1546

SUPPLEMENT A CONT'D

Plate No.	<u>Title</u>	File No.
A 60	LL 65 IMPERVIOUS STAGE II RECORD CONTROL	
	Q & S TESTS - 1 OF 2	RBL-3-1547
A61	LL 65 IMPERVIOUS STAGE II RECORD CONTROL	
	Q & S TESTS - 2 OF 2	RBL-3-1548
A62	LL 65 RANDOM STAGE II RECORD CONTROL	DD: 2 15/0
A63	Q & S TESTS - 1 OF 2 LL 65 RANDOM STAGE II RECORD CONTROL	RBL-3-1549
MUJ	Q & S TESTS - 2 OF 2	RBL-3-1550
A64	LL 70 RANDOM STAGE II RECORD CONTROL	0.000
NO 1	Q & S TESTS - 1 OF 2	RBL-3-1551
A65	LL 70 RANDOM STAGE II RECORD CONTROL	
	Q & S TESTS - 2 OF 2	RBL-3-1552
A66	BERM ZONE STAGE II RECORD CONTROL	
	Q & S TESTS	RBL3-1553
A67	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
	COMPACTION TESTS - 1 OF 2	RBL-3-1554
A68	LL 55 IMPERVIOUS STAGE I RECORD CONTROL	
	COMPACTION TESTS - 2 OF 2	RBL-3-1555
A69	LL 55 IMPERVIOUS STAGE II RECORD CONTROL	nnt 2 155/
A70	COMPACTION TESTS	RBL-3-1556
A/U	LL 60 RANDOM STAGE I RECORD CONTROL COMPACTION TESTS	RBL-3-1557
A71	LL 60 IMPERVIOUS STAGE II RECORD CONTROL	KDL-3-1331
87.4	COMPACTION TESTS	RBL-3-1558
A72	LL 60 RANDOM STAGE II RECORD CONTROL	NDD 3 1,550
	COMPACTION TESTS	RBL-3-1559
A73	LL 65 IMPERVIOUS STAGE II RECORD CONTROL	
	COMPACTION TESTS	RBL-3-1560
A74	LL 65 RANDOM STAGE II RECORD CONTROL	
	COMPACTION TESTS	RBL-3-1561
A75	LL 70 RANDOM STAGE II RECORD CONTROL	
. = 4	COMPACTION TESTS	RBL-3-1562
A76	BERM ZONE STAGE II RECORD CONTROL	0
	COMPACTION TESTS	RBL-3-1563

PERTINENT DATA

GENERAL

Location of Dam One mile south of I-470 and 1/2 mile east of

Raytown Road. In SW 1/4 NW 1/4, Sec. 4, T. 47 N., R. 32 W., Jackson County, Missouri, at approximately 109th Street, Kansas City, Missouri, and at mile 42.9 on the Little Blue

River.

Purposes Flood control, recreation, water quality

fish and wildlife.

Authorization Flood Control Act of 1968 (Public Law

90-483, 13 August 1968)

Operating Agency Corps of Engineers, Project Manager offsite

Drainage Area Above 50.3 square miles

Longview Dam

Near Damsite

Approximate Length of Lake At multipurpose level (E1. 891.0 ft.,

m.s.l.): from the dam, about 3.5 miles in a

southeasterly direction.

Approximate Length of 24 miles in length at multipurpose level

Shoreline (elevation 891.0 ft. m.s.l.)

Time of Water Travel at 13 hours to the Lake City gauge-Bank-full Rates 21 hours to the Missouri River-

Maximum Flood of Record 42,300 c.f.s., 13 August 1982

Channel Capacity 1,000 c.f.s.

Top of Dam Elevation 926.6 feet, m.s.l.

Length 1,900 feet

Type of Construction Rolled earthfill

Fill Quantity 1,028,000 cubic yards impervious 915,000 cubic yards randon

Freeboard 3.71 feet

Maximum Height Above Valley 100 feet Floor

Top Width 74 feet

Maximum Base Width 900 feet

PERTINENT DATA (CON.)

Date of Closure 16 June 1983

Date Storage Began 16 September 1985

Date Multipurpose Pool 23 September 1986 Initially Filled

SPILLWAY

Type Uncontrolled limited service

Location Left abutment

Crest Elevation 911.3 feet, m.s.1.

Width 200 feet

Discharge Capacity Top, surcharge pool El. 922.9 feet

NGVD 22,970 c.f.s.

OUTLET WORKS

Location Left abutment

Type Uncontrolled hooded drop inlet

Conduit 5.5 foot by 5 foot arch

Length 916 feet

Invert Elevation at Intake 816.0 feet, m.s.l.

Invert Elevation at Outlet 812.0 feet, m.s.1.

Discharge Capacity at 1,040 c.f.s. Elevation 922.9

(Top Surcharge Pool)

Discharge Capacity at 990 c.f.s. Elevation 909.0

(Top of Flood Control Pool)

Emergency Drawdown Gate 1-6.0 foot by 7.0 foot hydraulically

operated slide gate

Low Flow Intake 2-2.0 foot Dia knife gate valve

Low Flow Outlet 2-2.0 foot Dia knife gate valve

The outlet works also contain dual 54-inch severs with two 54- by 54-inch sever gates and two 54- by 54-inch crossover gates.

PERTINENT LAKE ELEVATION

Storage Designation	Elevat (feet From	ions m.s.l.) To	Storage ((acre- Initial	•	Area (acres) Top of Pool
Surcharge .	909.0	922.9	35,400		3,200
Flood Control	891.0	909-0	24,800	24,300	1,960
Multipurpose	816.0	891.0	22,100	20,600	930
Gross Storage	816.0	909.0	46,900	44,900	
Sedimentation Reserve			2,000		
Annual Sediment Inflow			20		

^{*100-}year sediment allocation initially allocated 1/4 (500 acre-feet) to flood control zone and 3/4 (1,500 acre-feet) to the multipurpose zone. Sediment allocation computed by 40 acre-feet per square mile per 100-year.

Fee Taking Line
Fee Lands Acquired
Easement Lands Acquired

Elevation 914.0 feet, m.s.1. 4,762 acres 63 acres

OPERATION AND MAINTENANCE MANUAL

LONGVIEW LAKE

LITTLE BLUE RIVER BASIN

LITTLE BLUE RIVER, MISSOURI

APPENDIX V

CHAPTER 1

INTRODUCTION

- 1-01. Purpose and Scope of Report. The purpose of this report is to provide in one volume the significant information needed by engineers to familiarize themselves with Longview Lake, reevaluate the embankment in the event unsatisfactory performance occurs, and provide guidance for designing comparable earth dams. The scope of this report provides a summary record of significant design data, design assumptions, specification requirements, construction equipment, construction procedures, construction experience, field control and record control test data, and embankment performance monitored by instrumentation during construction and during initial lake filling.
- 1-02. Project Purpose. Longview Lake is a multipurpose project realizing benefits from flood control, water quality control, recreation, and fish and wildlife.
- 1-03. Project Authorization. Longview Lake was authorized by the Flood Control Act of 1968 as a part of the "project for flood control and other purposes on the Little Blue River in the vicinity of Kansas City, Missouri, was authorized substantially in accordance with the recommendations of the Chief of Engineers in House Document No. 169, Ninetieth Congress First Lession."

CHAPTER 2

PROJECT DESCRIPTION

- 2-01. Project Location. The Longview damsite is located on he Little Blue River at approximately 109th Street, Kansas City, Missouri. The entire lake is located in Jackson County, Missouri. Location and vicinity map are shown on Plate 1.
- 2-02. Dam Description. The dam is a zoned, compacted earthfill embankment with a crest length of approximately 1,900 feet and approximately 110 feet in height. The crest width is 74 feet to accommodate the 109th Street which is a 4-lane divided highway. A central impervious core with an impervious cutoff trench to bedrock was used for the total length of the dam. The embankment includes an inclined pervious drain as well as a pervious blanket across the valley and up the abutments. Compacted random zones and berm zones are used to support the impervious zones and add stability to the embankment. The theoretical top of dam is 926.6 which provides for 3.9 feet of freeboard above the maximum surcharge pool. However, the dam was constructed to elevation 925.7 with the remainder of the freeboard being provided by the New Jersey type concrete median barrier. The upstream slope is designed to have graded riprap in the zone of frequent fluctuation (elevations 878-898) and at the top 10 feet of the dam (elevations 915-925). Slope protection consists of 18-inch riprap on 9-inch of bedding. Between elevations 898 and 915 a grassed slope protects the embankment. The general embankment plan and sections are shown on Plates 2 and 22 through 25, respectively. A clay blanket was constructed on the right upstream abutment between elevations 848 and 898. A small dike was constructed west of Raytown Road near Elm Avenue to fill in a saddle in the left abutment. This dike is only about 3 to 4 feet high with a crest width of 10 feet.
- 2-03. Spillway. The spillway is an uncontrolled limited service spillway 200 feet wide with IV on 6H side slopes cut in the left abutment overburden. The invert elevation is 911.3 which is 2.3 feet above the full pool elevation.
- 2-04. Outlet Works. The outlet works consist of an intake tower with a covered uncontrolled service drop-inlet, an arch-shaped conduit through the embankment, a parabolic drop into a stilling basin with an end sill and an outlet channel to the Little Blue River. The conduit crosses the dam centerline at station 98+70 and is skewed 3 degrees towards the downstream right abutment from the perpendicular to the dam axis. The concrete arch-shaped conduit is 4.83 foot wide and 5.5 foot high. Two 54-inch diameter sewer pipes encased in concrete are located below the conduit. The tower becomes submerged at elevations above 900 and a bridge at that elevation provides access to the tower from Service Road A.
- 2-05. Construction History. Since Longview Dam was located in a very urbanized area, there were many utility relocations which had to be completed prior to construction of the dam. The most extensive relocation was the existing 48-inch diameter sewer within the reservoir area which also crossed the dam centerline. It had to remain in service throughout the construction of the dam. It was unknown during the design phase exactly when the Little Blue Sewer District would complete their portion of the new sewer line within the reservoir area. Because of the uncertainty and the need to ensure closure

was not made until the sewer construction was complete within the reservoir area, construction of the dam was divided into two stages. The Stage I construction began in September 1979 and was completed October 1982. It consisted of foundation excavation for the cutoff trench and the outlet works including the outlet channel; foundation grouting; construction of the intake tower, conduit-sewer structure, and stilling basin; existing sewer relocation, diversion, and removal; placement of portions of the embankment on both sides of the river; and a 200,000 cubic yards impervious stockpile to be used for the Stage II contract. (See Plate 17 for Stage I construction.) The Stage II construction began in August 1982 and was completed September 1985. This contract included diversion of the river and embankment closure, completing the embankment, excavation the spillway, and construction of access and service roads. A 6-month construction halt was also included in the Stage II contract when the embankment reached elevation 890.

2-06. Lake Filling. After closure was made but before the embankment was topped out a lake formed several times due to excess runoff in the drainage basin. The highest lake level recorded during construction was elevation 865 on 10 June 1984 with the embankment at approximately elevation 885. This lake level was reached in less than 24 hours with the gates fully open. The embankment was topped out in September 1984 and the gates were closed to begin impoundment on 16 September 1985. The Initial Reservoir Filling Plan DM No. 20 was used as a guide during filling. The desired filling rate was 5 feet per month after the pool reached elevation 850. In October 1985 and November 1985 the pool rose faster than was acceptable and the emergency drawdown gate was opened to draw the lake down to the desired filling curve. On 23 September 1986 the lake reached multipurpose pool. The projected and actual filling curves are shown on Plate 45.

CHAPTER 3

GEOLOGY

- 3-01. Regional Geology and Physiography. Longview Lake is located in the extreme northern part of the Osage Plains Section of the Central Lowlands Physiographic Province. The Osage Plains Section is characterized by old scarp plains beveling faintly inclined strata. The Dissected Till Province which borders immediately to the north of the project is characterized by submaturely to maturely dissected till plains. A maturely dissected drainage pattern developed during pestilences time trends north into Missouri River. The project is located on the southern boundary of the Kansan Age Glacial Stage. Scattered loess deposits up to 7 feet thick are present on the uplands in the area. These deposits thicken to up to 90 feet along the Missouri River bluffs.
- 3-02. Site Geology. Gently rolling uplands surround Longview Lake. The Little Blue River flows generally north in a meandering, incised channel cut through alternating limestone and shale strata. At the damsite the valley is 1,800 feet wide from bluff top to bluff top and topographic relief is about 120 feet. The Bethany Falls limestone member of the Kansas City Group, Missourian Series, Pennsylvanian System is a prominent scarp forming ledge in the reservoir area. Its thickness is about 18 feet and it dips gently from elevation 885 on the right abutment to elevation 876 on the left abutment. Bedrock on the lower valley walls and valley floor is made up of less resistant shale and siltstone of the Pleasanton Group.
- 3-03. Description of Overburden. Overburden on the uplands in the general area consists of up to 30 feet of residual clay and scattered deposits of wind blown loess up to 20 feet thick. No loess deposits were encountered at the damsite. Overburden on the valley side slopes consists of residual clays and colluvium with clayey gravel at the base of the slopes. Alluvium in the valley ranges from 12 to 29 feet with the greatest thickness occurring in the terrace on the left side of the valley. The alluvium consists of predominately lean clay with lesser amounts of fat clay and silty, sandy gravel, in the basal 7 feet, resting on shale and siltstone bedrock. Generally the clays have medium to stiff consistencies although some soft clays were encountered in a few borings.
- 3-04. Bedrock. Bedrock at the damsite consists of alternating beds of limestone and shale of the Kansas City Group overlying a more massive section of less resistant clayey and silty shale, siltstone and sandstone beds of the Pleasanton Group. These rocks are classified as lower Pennsylvania Series. Underlying the Pennsylvanian rocks are about 2,200 feet of older sedimentary strata. Only the lower one-half of the Kansas City Group and the upper one-third of the Pleasanton group are exposed at the damsite. See the General Geologic Column and Legend on Plate 6. The regional dip of the bedrock ranges from 10 to 20 feet per mile west, northwest, but local variations in dip and strike occur. At the damsite bedrock dips I foot in 300 feet to the east into the right abutment and I foot in 65 feet to the west into the left abutment.

Jointing of beds may be very intense locally, due to dome-related flexures. Primary joints are generally vertical and strike north 50 degrees east spaced 5 to 35 feet apart. Secondary joints are generally, vertical,

tight, strike North 75 degrees West and spaced about 2 feet apart. A series of faults are known to exist in the road cut along a one mile reach of Highway I-470, located about 3/4 mile north of the damsite. However, faulting could not be traced into the soil profile and no evidence of faulting was found in the cutoff trench or foundation excavations during construction.

Depth and degree of weathering vary considerably with rock type and thickness of soil cover. The limestones are softened and stained to depths of a few inches to 5 feet below their surface. The Bethany Falls crops out prominently along the valley wall and partially filled joints, up to 5 feet in width, are apparent at the outcrop. By 50 feet into the abutment the effects of weathering of the Bethany Falls appears to have been moderated by the presence of overlying shale. Large blocks of Bethany Falls measuring up to 15 feet or so in their greatest dimension became detached at the joints due to the weathering and erosion processes with some blocks moving down slope. Neither the Winterset nor the Sniabar limestone formed prominent outcrops in the abutments and were commonly mantled by a 1 foot to 8 foot depth of overburden. Weathering effects extended as much as 12 feet beneath the bedrock surface of the interbedded limestones and shale. A more detailed description of the bedrock and bedrock units can be found in the Construction Foundation Report.

3-05. Subsurface Investigations Prior to Construction. Geological investigation of the damsite included field reconnaissance, review of geologic literature, analysis of air photos, survey of water wells, review of gas and oil well logs and exploratory drilling. A total of 339 borings and 11 test pits were completed by government drill crews prior to Stage I construction. Overburden exploration included 2-inch, 4-inch, and 6-inch diameter drive holes; 3-inch and 5-inch Shelby tube samples, auger samples, and samples obtained from test pits. The bedrock investigation included NQ, NX, 4-inch and 6-inch cores. Eleven NX, angled, core holes were drilled on the left abutment and five were drilled on the right abutment. Thirty-three bedrock borings were hydraulically pressure tested. Natural gas was encountered in hole DC-10 and C-145A between elevations 762 and 768. Gas pressure measured ll psi with the packer set at elevation 801. A 5-minute pressure test with 35 psi yielded a "take" of 0.2 gallons per minute. The gas in both holes was found to be at low pressures and limited in volume as it quickly dissipated during drilling. A .5-foot cavity was logged in siltstone 13 feet below the top of the bedrock surface in hole UC-9. Two additional holes were drilled in the vicinity of the void; however, neither the cavity nor the evidence as to the geologic cause could be found.

CHAPTER 4

FOUNDATION AND EMBANKMENT

- 4-01. General. The main embankment consists of a compacted earthfill approximately 1,900 feet long with an outlet works and an uncontrolled limited service spillway (200 feet base width) located in the left abutment. The maximum height of the embankment above the valley floor is 110 feet. Theoretical top of dam is 926.6, but the embankment was only constructed to elevation 925.7 and the remaining freeboard is achieved by the New Jersey type median barrier. The dam was constructed with a centrally located impervious core to prevent seepage through the embankment. The impervious core is supported on either side with random and berm zones. The various embankment zones were designed to utilize the available borrow material. An inclined pervious drain was constructed on the downstream side of the impervious core and is connected to a horizontal blanket which extends along the base of the embankment and exits at the downstream toe. Any seepage which may occur through the impervious core is intercepted by the inclined drain and carried out the embankment through the horizontal blanket. The foundation overburden was relatively shallow with a layer of clayey or silty sandy gravel located directly above the bedrock. In order to cutoff any water flowing through the basal gravels an impervious cutoff trench was constructed into rock for the full length of the dam. Various foundation bedrock formations were highly jointed and fractured. A grout curtain was installed below the cutoff trench for the full length of the dam in order to control the seepage through the bedrock. A plan view is shown on Plate 2.
- a. Valley Section. (Station 90+00 to 97+00) The embankment across the main valley varies from 100 to 120 feet in height with an average height of 110 feet above the valley floor. Zoning consists of centrally located impervious core supported by random and berm zones. Typical valley section is shown on Plate 23. The foundation overburden consisted of between 12 and 29 feet of alluvium which was predominantly lean clay with lesser amounts of fat clay. A clayey or silty sandy gravel was common in the basal portion (1 to 7 feet) of the alluvium. The underlying bedrock surface was Pleasanton Zone E (argillaceous siltstone).
- embankment section is similar to the valley section except that the downstream slope is flattened to 1V on 6H, there is no downstream berm zone, and an impervious clay blanket was placed upstream on the far right portion of the abutment. Typical right abutment sections are shown on Plates 22 and 23. The natural slope of the upper portion of the abutment between approximate stations 86+00 and 87+50 was about 1V on 8H. From approximate station 87+50 to the toe of the abutment at station 90+00 the slope was irregular and considerably steeper, averaging 1V on 2.8H. The foundation overburden on the slopes consisted of residual clays and colluvium, while at the hase of the abutment clayey gravel underlaid alluvial clay. Thickness of the overburden ranged from zero at the Bethany Falls outcrop to a maximum of about 15 feet at the base of the valley wall. The foundation bedrock consists of 12 stratigraphic units of interbedded limestone and shales (Plate 7).
- c. Conduit Section. (Station 98+00 to 100+00) The conduit section is located basically at the toe of the left abutment (Plate 24). The centerline

of the conduit crosses the dam axis at station 98+70 and is skewed 3 degrees towards the downstream right abutment from perpendicular to the dam axis. The conduit section is constructed of impervious material with no random or herm zones. Since an all impervious zone with higher strength clays was used, the embankment slopes were steepened allowing for a shorter sewer-conduit structure. The overburden thickness on the right side of the conduit varied from 16 to 27 feet and consisted of alluvium similar to that in the valley section. At the toe of the left abutment from approximate station 99+00 to 100+00, the overburden was colluvium and clay alluvium consisting of clay, and fragments of shale and limestone ranging in size from gravel and cobbles to slabs and large blocks. The overburden rested on Pleasanton Zone C (argillaceous limestone) from the upstream end of the apploach channel to near the dam axis. Except for a short horizontal extension of the Pleasanton Zone D (calcareous siltstone) the top of bedrock from the dam centerline to the downstream end of the outlet channel was Pleasanton Zone E (argillaceous siltstone). The outlet works profile is shown on Plate 8.

d. Left Abutment. (Station 100+00 to 107+00) This section is similar to the valley section except there is no upstream or downstream berm zone and the downstream slope is flattened to 1V on 6H. A typical left abutment section is shown on Plate 24. The natural slopes of the left abutment were generally not as steep as those of the right abutment. Between approximate stations 100+00 and 100+65, the average slope was 1V on 4H and it flattened to 1V on 6.5H between stations 100+70 and 103+00. The natural slope became progressively flatter between station 103+00 and the end of the embankment. From approximate station 100+00 to station 100+65 overburden ranged in thickness from 6 to 22 feet and consisted essentially of colluvium similar to that in the conduit section and residual clays. From the top of the Bethany Falls outcrop at approximate station 100+70 to the end of the embankment at station 107+00, the overburden consisted of residual soils of essentially lean and fat clays. Thickness of overburden ranged from 2 to 16 feet with the greater depths underlying the flatter upland slope. The foundation bedrock consists of the same 12 stratigraphic units of interbedded shales and limestones found on the right abutment (Plate 7).

4-02. Foundation Treatment.

- a. Valley section. All of the embankment foundation was stripped of boulders, sod, roots, tree stumps, etc. and the overburden disked to a minimum depth of 8 inches and compacted with a minimum of three passes of a rubber tired roller. The 48-inch diameter reinforced concrete sewer pipe and pipe bedding, which crossed the dam axis at station 97+95, was removed under the entire embankment. Cleanup of the sewer excavation was accomplished and the backfill consisted of impervious under the impervious zone and random elsewhere.
- b. Outlet Works Foundation. All overburden below the outlet works was excavated and backhoes and airspades were used to excavate the rock. A rock saw was used at the tower to excavate the vertical sides of the tower foundation. The final foundation in the outlet works except for the intake tower and stilling basin was excavated with a "roto mill" which consisted of a large track-mounted cutting roller. Air water jets were used to clean the final bedrock surface prior to placing a 6-inch layer of lean concrete. Lean concrete was also used downstream of the centerline of the dam in order to

meet the required grade for the outlet works. The lean concrete was as much as 4-feet thick at the lower end of the outlet works and stilling basin.

- c. Abutment Foundations. The subcrop faces of several limestone ledges were trimmed back to either a 1V on 1H or 1V on .5H slope not only at the centerline but for a distance of as much as 400 upstream and 235 downstream. In some areas concrete bulkheads were placed against the bedrock faces to seal open bedding planes and vertical joints to achieve the desired slope to place fill (Photo 35). In other areas the open joints on top of the horizontal benches were gravity grouted (Photo 19). A total of 279.75 sacks of cement were used to dry pack joints or as poured grout at 35 separate locations. A total of 342.1 cubic yards of lean concrete was placed behind forms to seal joints and maintain the required slopes.
- d. Cutoff Trench. In order to control seepage through the foundation overburden and to facilitate foundation grouting, the cutoff trench was excavated to bedrock from station 86+00 on the right abutment to station 104+00 on the left abutment. Side slopes in the overburden are 1V on 2H and in the bedrock are excavated to IV on IH. The floor of the cutoff trench is 30 feet which allows 24 feet of impervious and a 6 foot pervious drain backfill. Prior to curtain grouting, the cutoff trench was excavated to grade with the exception of the exposed shales which were left 2 feet high in order to protect the final shale surface from weathering or drying out. Grouting was performed from the floor of tie cutoff trench through 2-3/4 inch steel pipes cemented 2 feet into the bedrock. Once the curtain grouting was complete the steel grout pipes were removed. The upper 2 feet of grout holes in the limestone were gravity grouted while the upper 2 feet of shale was removed to bring the shale surface to final grade. The final bedrock surface was cleaned with air-water jets. The cutoff trench backfill was performed in the dry utilizing small gasoline pumps in sumps. The main sources of seepage were small areas encountered within the basal clayey gravels. Details of the dewatering efforts are included in Chapter 8.
- 4-03. Embankment Materials. The embankment zoning was designed to economically use the available material from required excavation and upstream borrow, to provide seepage control, and to provide slope stability. Because of the distribution of materials in the borrow area and the need to maximize the strength of fill placed in the conduit section and in the lower portions of the embankment considerable effort was expended in defining quantities of various liquid limit materials in the borrow. For the most part the easily available lower liquid limit m. erials were in the low lying areas and were used in the Stage I embankment or were stockpiled to avoid inundation after closure. The remainder of the borrow had CL and CH materials interlayed and had to be differentiated to insure optimum use of higher strength material. See also Chapter 8.
- a. Impervious. The specifications for Stage I and II required the impervious material consist of soil classified as CL and CH with the material placed upstream of the dam axis having no more than 5 percent gravel. For Stage I, the maximum liquid limit specified for all impervious material was 55. The maximum liquid limit specified for the Stage II impervious material varied from 55 to 65 depending on the embankment feature and elevation. Generally, the lower liquid limit material was placed in the lower portions of the embankment. The Stage II impervious zone liquid limits are shown on the table below:

3

STAGE II IMPERVIOUS ZONE LIQUID LIMITS

Area

Maximum Liquid Limit

Below elevation 867, including cutoff trench	55
Between stations 97+00 and 101+00 - Below	
elevation 887	55
Cutoff Trench above elevation 867	60
Inspection Trench	60
Between stations 97+00 and 101+00 - Above	
elevation 887	60
Impervious Clay Blanket	65
Above elevation 867, excluding cutoff trench,	
inspection trench, and between stations 97+00	
and 101+00	65

Typical cross sections showing the impervious zone liquid limits are on Plate 46. The allowable moisture content at the time of placement ranged from 2 percent below optimum to 3 percent above optimum. It was required that the impervious material be compacted to at least 95 percent maximum density obtained by the standard Proctor compaction test. Most of the impervious material was placed in 8-inch lifts and compacted with 6 passes of a sheepsfoot roller except the material directly over the foundation rock. (See Chapter 8 for procedure used.) A total of 1,028,528 cubic yards of impervious were placed in the dam with 509,866 cubic yards being placed in Stage I and 518,662 being placed in Stage II.

b. Random. The random material consisted of overburden material except that soil classified as OH, PT, MH, and OL. The random material came from the required excavations and upstream borrow. Some of the random zone consisted of gravelly material not suitable for the impervious zone. Maximum liquid limit in the Stage I contract was 60, but varied between 60 and 70 in the Stage II contract. Lower maximum liquid limits were required in the lower portions of the embankment. The Stage II liquid limits are listed below:

RANDOM ZONE LIQUID LIMITS

Area	Maximum Liquid Limits
Below elevation 867 upstream of dam axis	60
Below elevation 867 downstream of dam axis	65
Above elevation 867	70
Spillway Dike and Elm Avenue Dike	*

^{*} No liquid limit requirement but shall be a CL or CH material.

Plate 46 shows the various liquid limit zones on typical cross sections. Moisture requirements for random were the same as for impervious and compaction was either six passes with a sheepsfoot roller on 8-inch lifts or three passes with a rubber-tired roller on 12-inch lifts. A total of 914,813 cubic yards of random material was placed in the dam with 215,552 cubic yards being placed in the Stage I contract and 699,261 cubic yards being placed in the Stage II contract.

- c. Berm. The upstream and downstream berm consisted primarily of fat clay (CH), however, according to the specifications could have been shale and other materials from the required excavations and borrow areas unsuitable for or in excess of the requirements for impervious, random, or rockfill. Fat clay (CH) was used in the upper 5 feet of bern normal to the upstream slope and for the closure Phase I and II cofferdams. The only moisture content requirements for Stage I was to the extent required for unassisted movement of compaction equipment. For Stage II the requirements were the same as Stage I on the wet side of optimum but on the dry side of optimum were limited to no more than 4 percent below optimum. On Stage I, the berm was compacted using two passes of a rubber-tired roller with 24-inch lifts or two passes of a sheepsfoot roller with an 8-inch lift. For the Stage II contract compaction was performed with either four passes of a sheepsfoot roller on an 8-inch lift or two passes of a rubber-tired roller on a 12-inch lift. A total of 965,971 cubic yards of berm were placed with 344,467 cubic yards being placed in Stage I and 621,504 cubic yards being placed in the Stage II contract.
- d. <u>Pervious</u>. The pervious material was clean free-draining, durable, natural sand obtained from a commercial Missouri River sand plant having the following gradation:

Sieve Size	Percent by Weight Passing
No. 4	90-100
No. 16	55-85
No. 50	5-20
No. 200	0-5

The majority of the sand had less than .5 percent passing the 200 sieve. Stage I required the pervious material be compacted using 3 passes of a vibratory roller on 12-inch lifts. For hand compacted (special backfill) a plate vibratory roller on 4-inch lifts to obtain 80 percent relative density was required. During construction this was reduced to 70 percent (see paragraph 8.02 d.(2)). The compaction procedures for Stage II were the same as Stage I and based on the previous experience the required relative density was reduced to 70 percent for a plate vibratory compactor with 6-inch lifts. Moisture content of the sand was controlled such that the sand was saturated during compaction. A total of 104,584 cubic yards of pervious was placed with 30,387 cubic yards being placed in the Stage I contract and 74,197 cubic yards being placed in the Stage II contract. The outlet of the pervious zone is protected with a 12-inch thick layer of bedding which was placed using a track-mounted backhoe. The bedding has the following gradation:

12-Inch Bedding

Dimension	Percent by	
Sieve Size	Weight Passing	
6-inch	maximum allowable	
3-inch	70-90	
1-1/2-inch	55-75	
1/2-inch	35-55	
#4	15-35	
#10	0-20	
#20	0-5	

- e. Rockfill. The better quality limestone excavated from the abutments was used as rockfill (photo 21) to add stability and protection to the upstream clay blanket. The specification required the rockfill be reasonably well graded with a maximum size stone of 300 pounds and no more than 10 percent passing the 2-inch sieve. Shale and other soft friable particles were limited to 10 percent. The rockfill was placed in 36-inch lifts with no moisture control or compaction requirements except when the rockfill was placed within 2 feet of bedrock, berm or impervious clay blanket, at which time it was to be wheel-rolled with approved equipment.
- f. Special Backfill. Special backfill is placed in the bedrock irregularities or other confined areas adjacent to structures where rollers could not operate effectively. The 2-foot thick zone of material against the bedrock surfaces was also considered as special backfill. This included the impervious and pervious zones for Stage I and the impervious and random zones for Stage II. The specifications required the special backfill be placed in 3-inch lifts. The impervious and random material was compacted with a power tamper to 95 percent of standard Proctor density, and the pervious was compacted with a plate vibrator to 80 percent relative density which was later reduced to 70 percent. The moisture requirements for Stage I were the same as the corresponding zone of material and for Stage II were between optimum and 3 percent above optimum. The rate of placement was controlled so that the relatively thin hand-compacted zones were covered with equipment-compacted material as soon as possible to prevent drying, excess wetting, or freezing and thawing.
- g. Channel Fill. Material from required excavation and stockpiles which were not suitable for the embankment were used as channel fill. Rock excavation including shale was also allowed as channel fill as long the rock was covered with at least 2 feet of soil material. This material was placed in the old river channel downstream of the embankment with no moisture control except that required to allow traffic compaction of the 24-inch maximum lifts.
- 4-04. Stone Protection. The upstream stone protection consists of 18-inch riprap overlaying 9-inch bedding located between elevations 878 to 898 and 915 to 925. The bedding and riprap gradations are as follows:

9-Inch Bedding

Dimension	Percent by	
Sieve Size	Weight Passing	
5-inch	maximum allowable	
3-inch	75-95	
l-inch	40-60	
1/2-inch	20-40	
#4	0-20	

18-Inch Riprap

Weight in Pounds	Percent of Total Weight	
Per Stone	Lighter Than	
400	100	
200	60-90	
100	30-50	
25	0-15	

All of the riprap and bedding was placed during the Stage II contract using either a track-mounted backhoe or a track-mounted front-end loader. (This equipment was not allowed on the placed stone.) (See Photos 54 and 55.) The upstream riprap is Bethany Falls limestone which was obtained from the Orrick Stone Co. Quarry in Clay County, Missouri. The upper 4.5 feet of material in the quarry was not used because of the poor quality rock.

The upstream riprap was designed in accordance with "Criteria for Riprap Wave Protection in Missouri River Division" dated June 1974 and ETL 1110-2-221 (29 Nov 76). The riprap design and the basis for the riprap limits are shown on Plate 32. The riprap was sized based on the design wave height (HD) which is equal to the significant wave height (HS) multiplied by 1.4. Significant wave height (HS) for the lower slope protection was 2.2 feet generated from 59 m.p.h. wind with a 20 minute duration. The critical combination for the upper area of stone protection is 56 m.p.h. wind for 30 minutes causing a significant wave height (HS) of 2.9 feet. The theoretical riprap necessary for the upper riprap zone is 21-inch, however, 18-inch was used instead since there is a very remote possibility the design condition will ever occur.

Based on economics, the embankment slope was designed to minimize the amount of required slope protection. The upstream riprap was placed between elevations 878 and 898 and elevations 915 and 925. These stone protection zones were determined from the Pool Elevation-Duration Curve, Lake Stage Frequency Curve and the chart showing the number of day per hundred years the pool is within the wave-height of a given elevation. In addition the upper slope has riprap to reduce wave run-up and protect the upper embankment during a full flood pool event.

The stilling basin riprap was also 18-inch and was placed similarly to the upstream slope. The stilling basin riprap is Winterset limestone from the lower 8.5 feet of the Courtney Road Quarry in Jackson County, Missouri. The riprap was designed based on methods described in ETL 1110-2-8 and ETL 1110-2-221. The design parameters used were an average flow velocity of 5.6 ft./sec. over the end sill, a design wave height of 2.8 feet, a safety factor of 1.5, and a specific gravity of 2.6. The riprap was designed based on wave height requirements, since the waves would cause more damage than the velocities.

4-05. Settlement. Settlement analyses were performed on the foundation overburden based on consolidation test results of select samples. These studies indicated a maximum total settlement of 2.2 feet in the valley foundation overburden and 1.9 feet in the terrace overburden. It was anticipated the majority of this settlement would occur during construction with only minor amounts occurring after construction. A 0.6 foot overbuild was constructed to compensate for post-construction settlement. During Stage

II construction, three settlement plates were installed in the valley section to measure settlement during and after construction. Two of the settlement plates are installed in the foundation overburden and one is installed in the embankment just above the pervious blanket in the random zone. As of April 1990, the maximum settlement in the two foundation plates is .71 foot with .66 foot occurring during construction and the settlement in the lower embankment plate is .8 foot with .54 foot occurring during construction. Also seven crest settlements monuments were installed to monitor settlement after construction. The crest settlement monuments indicate uniform settlement across the valley no more than .35 foot.

CHAPTER 5

SEEPAGE CONTROL

- 5-01. Through Seepage. Seepage through the embankment is controlled by a combination of embankment zoning and an inclined pervious drain. The impervious core prevents excessive seepage through the embankment. The random zones also assist in preventing through seepage since it was constructed primarily of impervious material. Any seepage which does occur is intercepted by the inclined pervious drain located on the downstream edge of the impervious core. The inclined pervious drain is connected to the horizontal sand blanket and together they will draw the phreatic surface down well within the embankment.
- 5-02. Underseepage. Seepage beneath the embankment is controlled by a cutoff trench, grout curtain and the extension of the sand blanket up the abutment. The impervious cutoff trench extends through the overburden and weathered rock down to firm bedrock. The grout curtain was constructed from the bottom of the cutoff trench and extends the full length of the dam.
- a. Cutoff Trench. The cutoff trench was constructed to control seepage through the foundation overburden and weathered rock. It extends the full length of the embankment from station 86+00 on the right abutment to 104+00 on the left abutment. The trench is 30 feet wide along the bottom with excavated side slopes of 1V on 2H in the overburden and 1V on 1H in the bedrock. The cutoff trench was backfilled with impervious material to prevent seepage under the embankment. However, a 6 foot wide pervious drain which is connected to the horizontal sand blanket was placed on the downstream side of the trench to intercept any seepage which may occur.
- b. Grout Curtain. The grout curtain was constructed to prevent underseepage through the bedrock. It consists of three lines of grout holes in the abutments and a single line of grout holes in the valley. Grouting was performed from the floor of the cutoff trench through 2 3/4-inch diameter steel pipe cemented about 2 feet into bedrock. The grout holes were drilled the total depth using rotary drilling methods. After drilling, the grout holes were washed through the drill rods, pressure tested, and grouted through a packer which was set at successively shallower depths. The grout pressure was not allowed to exceed the estimated vertical stress at the packer depth. All the grout holes were inclined 30 degrees from vertical and drilled parallel to the dam centerline into the abutments. The grouting plan and profile are shown on Plates 14, 15 and 16. Some variations to this plan were made during construction. A more detailed description of the actual grouting plan and operations are provided in the Construction Foundation Report. Line A is 10 feet downstream of the dam axis and actually extends from station 86+25 to 89+65 on the right abutment and between station 100+05 and 103+85 on the left abutment. Line B is located 10 feet upstream of the dam axis and was constructed from station 86+20 to 89+65 on the right abutment and 100+05 to 103+85 on the left abutment. Line C is along the dam axis and extends from station 84+00 to 112+00.
- c. Abutment Seepage. In addition to the cutoff trench the grout curtain, and the sand blanket which extend up the abutments, the embankment slopes at the abutments were flared and a clay blanket was constructed on the

right abutment to control underseepage at the abutments. Excess rock from required excavation was used in an outer rockfill zone to protect the clay blanket. The majority of the abutment seepage was expected to occur through the Bethany Falls limestone rather than the relatively tight lower bedrock units. Therefore, additional readily available rockfill was placed along the abutment up to elevation 848. The clay blanket was then placed on top of the rockfill and carried up to elevation 898.

CHAPTER 6

SLOPE STABILITY

- 6-01. General. This chapter discusses slope stability investigations. It presents the design analysis and consists of slope stability which was performed in conjunction with establishing embankment slopes and internal zoning. The results of the design analysis were originally presented in Design Memorandum No. 5, Soil Data and Embankment Design dated June 1978. A stability analysis of the left embankment which was performed after Stage I construction when high construction induced pore water pressures were measured in the embankment is discussed in Chapter 8 and Enclosure 1. A stability analysis was also conducted after Stage II construction for the conduit section when movements were detected in a lower zone of the embankment.
- 6-02. Design Strength Testing. Laboratory tests to determine strength parameters for design were performed on samples of materials from the required excavations, proposed borrow areas, and from the foundation. The testing consisted of laboratory tests on undisturbed samples of foundation material and on remolded samples from required excavation and potential borrow material. The tests generally followed procedures outlined in EM 1110-2-1906 entitled "Laboratory Soils Testing", 30 November 1970. Compaction of remolded or disturbed strength test specimens of cohesive soils was in accordance with EM 1110-2-1902, "Engineering and Design Stability of Earth and Rockfill Dams", 1 April 1970. Test loads generally covered the range anticipated in the embankment or foundation.
- a. Triaxial Compression Tests. Triaxial "Q" and "R" tests were performed on representative undisturbed and compacted samples under confining chamber pressures ranging from 0.5 to 6.0 tsf. Pore pressures were measured in some of the "R" tests for the purpose of determining the effective strength of the soil. The general procedure involved strain controlled tests on two or three specimens trimmed from a single sample horizon. Composite specimens were compacted in eight layers by kneading to the range of densities and moisture contents expected during construction. Specimen dimensions were 1.4 inch by 3.0 inch height. No attempt was made to saturate the "Q" test specimens. "R" tests were saturated with back pressure ranging from 1.9 to 6.0 tsf. The strain rates were 0.5 percent per minute for the "Q" tests and 0.12 percent per minute for the "R" tests. In "R" tests, consolidation under the assigned chamber pressure was continued until a plot of volume change versus log time indicated that primary consolidation was complete. Peripheral filter paper strips were used to accelerate drainage. The deviator stress at 15 percent strain was assumed to be the maximum if it had not peaked beforehand.
- b. Direct Shear Tests. Direct shear tests were performed on representative undisturbed and compacted soil specimens and on undisturbed shale specimens. Composites were compacted by kneading to the assigned density and moisture content, generally 95 percent of standard effort maximum dry density at a moisture content 3 percent greater than optimum. Normally, two specimens were sheared under a normal load of 4, 5, or 6 tsf. Before shear, the specimens were allowed to consolidate under the applied normal load until primary consolidation was complete. Specimens were sheared at a constant cate of 0.0003 inches per minute. Normally, this rate of deformation

met the $50t_{50}$ criterion. Residual shear tests on intact and pre-cut samples were performed with a direct shear machine capable of shearing the specimen, then reversing the direction of shear 180 degrees and shearing the specimen again without releasing the normal load in the process. In order to obtain the strength at large strain, this procedure was repeated until no reduction in shear strength occurred from additional shearing.

- 6-03. Selection of Design Strengths. In selecting design values, considerations were given to 1) stress-strain compatibility, 2) the relationship of maximum shear strength to ultimate shear strength, 3) the number of tests, 4) the nature of the material, and 5) the location of the material with respect to potential failure surfaces. Design shear strengths were selected with two-thirds of the test values exceeding the design values.
- a. Foundation Overburden. Test results of the terrace and valley reaches showed that one design strength was appropriate for the entire valley section. The following shear strengths were selected.

TYPE OF STRENGTH	c (TSF)	Tan Ø
Q	0.60	0.00
Ř	0.20	0.20
S	0.00	0.50

- b. Foundation Shales. Only "S" strengths were used for shales in the design. Unconfined compression tests indicate that the "Q" strength is substantially greater than the overburden and therefore is not a factor in the stability analysis. Past experience in the Kansas City District indicates that because these shales are highly overconsolidated, "R" strength is generally greater than "S" strength over the range of normal stresses encountered. The design "S" strength for the shales in the abutments and valley is c = 0, $tan \emptyset = 0.60$. A residual "E" strength of c = 0, $tan \emptyset = 0.30$ was also used.
- c. Compacted Embankment Material. In the original DM analysis higher strength lean and fat clays with liquid limit less than 55 from the low-lying borrow were to be used in the impervious zone and in the conduit section between stations 97+00 and 101+00. The higher liquid limit fat clays (with LL generally less than 70) from the upper borrow areas were expected to be used in both the impervious and the random zones for the remainder of the embankment. Thus the same strengths were assigned to the impervious and random zones for these reaches. (As a result of comments from higher authority, this was changed during the plans and specifications so that the lower liquid limit materials were used in the impervious zone to the extent possible and liquid limit restrictions were also applied to the random zone. The objective was to use the lowest available liquid limit materials in the lower part of the embankment to optimize strength and stability of the embankment. For a distribution of material requirements developed during the plans and specification phase of the design see Chapter 4.) The design strengths used in the DM stability analysis are shown in the following table. The pervious zone had a higher strength than the random or impervious but because of the limited extent of this zone the higher strength was ignored in the stability analysis.

RANDOM AND IMPERVIOUS

TYPE OF STRENGTH	c (TSF)	Tan Ø
Q	0.90	0.00
R	0.20	0.20
S*	0.00	0.50
S**	0.00	0.36

- * Liquid limit less than 55, conduit section.
- ** Higher liquid limit material from higher elevation borrow areas.

BERM ZONE

TYPE OF STRENGTH	c (TSF)	Tan Ø
Q	0.45	0.00
R	0.10	0.20
S	0.00	0.30

- 6-04. Design Stability Analysis. The embankment was analyzed for stability at three locations in an effort to cover the various conditions existing in the dam. Those locations are the valley section, conduit section, and the cofferdam.
- a. Method of Analysis. A force equilibrium wedge method was used to analyze the slope stability of the Longview embankment. A computer program titled "Stability Analysis - Wedge Method" (File No. 741-F5-c1020), commonly known as KC Wedge, was used to perform the stability analysis. This program satisfies force equilibrium only using an analytical technique discussed on Plate 86. It searches for the shear surface with the minimum factor of safety. The results were checked by searching from more than one starting point to make sure that the program did not miss potential failure areas. The slope of the effective "E" force was assumed to be one-half the average outer embankment slope. The computer program is compatible with Appendix VI of EM 1110-2-1902, except for: (1) the slope of the "E" force is assumed to be constant throughout the active wedge, and (2) the angle of the shear surface was assumed to be the same for each material in the active wedge. The critical shear surfaces were checked manually. In all cases, the manual checks confirmed the computer factors of safety. Typical analyses for the end of construction, partial pool, rapid drawdown from maximum surcharge and full pool, and steady seepage cases are discussed below and are shown on Plates 87 and 88.
- embankment nor the foundation consolidates during construction. Submerged weights were used below and moist weights above the line of saturation, which was assumed near the ground surface. Upstream and downstream slopes were analyzed using "Q" (unconsolidated-undrained) shear strengths and were designed for a minimum factor of safety of 1.3. In order to meet the required 1.3 factor of safety in the valley section a construction halt at elevation 915 was needed to allow consolidation of the foundation clay. This was later

changed to elevation 890 and embankment fill placement rate restrictions were established (see Chapter 8).

- c. Partial Pool Case. The upstream slopes were analyzed for pool elevations ranging from near the valley floor to near full pool to determine the critical pool level. The intermediate shear envelope (S, (R+S)/2) was used. The saturation line was assumed to be horizontal at the pool elevation being considered. Submerged weights were used below and moist weights above the saturation line. The slopes were designed for a minimum factor of safety of 1.5 for a slide in the impervious and random zone. In the valley section a partial pool slide in the berm had a 1.22 factor of safety with the pool at elevation 855. The upstream berm slope was not flattened because of the improbability of the pool being at this elevation long enough for full saturation of the embankment to occur.
- d. Steady Seepage Case. The downstream slopes were analyzed for a spillway crest pool, steady seepage case. Vertical equipotential lines were assumed. The shear envelopes and design factors of safety were the same as for the partial pool case. The slopes were also analyzed using residual strengths for the foundation shales, with a minimum factor of safety of 1.0 being required.
- e. Sudden Drawdown Case. The upstream slopes were analyzed for a sudden drawdown condition, both from the spillway crest and from maximum surcharge. In both studies, it was assumed that the lake was drawn down to multipurpose pool. The combined "S" and "R" strength shear envelope was used. The analyses assumed that the embankment was saturated as shown and that the pool was instantaneously lowered with no dissipation of pore pressure occurring during drawdown. Slopes were designed for a minimum factor of safety of 1.2 for a drawdown from the spillway crest and a minimum factor of safety of 1.0 for a drawdown from the maximum pool.
- f. Earthquake Case. The slopes of the embankment were subjected to a pseudo-static earthquake analysis during design. Longview Dam is located near the border between seismic zones 1 and 2. ER 1110-2-1806 requires the evaluation of potential liquefaction for all existing projects in zone 2 where embankment or foundation materials are present that are suspect of being susceptible to liquefaction or excessive deformation. Since the clay soils encountered are not vulnerable to liquefaction, a psuedo-static analysis was conducted.
- q. Results. The results of the stability analyses performed for the design memorandum on the valley section, conduit section, and the cofferdam are shown on Plates 89 through 91.
- 6-05. Stage II Stability Analysis. Because of high construction induced pore pressures in the conduit embankment and a zone which developed deformation during Stage II construction, additional stability studies were made for the end of construction conditions. Analysis was performed on the upstream slope of the conduit section where both inclinometer data and observed bridge movements showed movement was occurring. The zone of movement roughly corresponded with the area of highest pore pressure. While pore pressures were experienced at the closure section and the right embankment, no significant movement was detected at other locations and the pore pressures

were some what less and tended to be confined to the cutoff trench backfill (See Plate 44). Although there was some indication that placement water contents were farther above optimum than indicated by the field test data (see Chapter 8), it is believed the left embankment experienced unusually high pore pressure response because of its differential foundation conditions and its relatively small size as constructed in Stage 1. The pore pressure was concentrated in that portion of the embankment which was placed on relatively rigid rock foundations or conduit. The left embankment foundation has a considerable portion placed on rock or concrete: the conduit excavation, the old sewer trench excavation and the cutoff trench. It appears that the backfill, being some what stiffer than adjacent overburden, probably carries load from surrounding fill areas which would increase stresses and thus pore pressure. Both total and effective stress analyses were performed. The effective stress analysis used both a pore water pressure coefficient. Bishop's r., and pore pressure contours developed from measured induced construction pore pressures. Inclinometers showed a zone of movement occurring at approximately elevation 827 at range approximately 1+80 upstream and analyses were performed with the shear surface through this zone.

- a. Method of Analysis. The computer program SSTAB2 (Spencer's method) was used for the Stage II analysis. It satisfies all requirements of static equilibrium by varying the safety factor and side force inclination simultaneously. This program was written by Stephen Wright, University of Texas, Austin.
- b. Revised Soil Parameters. The shear strength for the soil was determined from field compaction results, record control testing, and from testing on undisturbed samples taken both during the installation of instrumentation and from the side walls of two large diameter auger holes installed at the end of Stage I construction. The unit weight used was 125 pcf. The "S" strength for the effective stress analyses was determined from record control direct shear and tilaxial "R" tests with pore pressure measurements. An envelope of c = 0.1 tsi and tan $\emptyset = 0.5$ was selected. strengths were believed appropriate because of the movement experienced and that shear stress induced pore pressures were being measured. For the total stress analysis it was assumed a soft zone existed in the zone of movement. No attempt was made to specifically sample and test this zone since the embankment had been investigated previously during Stage I and no defined soft zone was found. Some strength rest results showed strengths lower than the design value but a continuous layer was no identified. A reduced strength of 0.5 tsf was assumed for comparison purposes.
- c. Results. Initial stability analysis was made using a simplifying assumption for the pore pressure of r=.05. This analysis showed F=1.10 which was verified with a hand solution. It was believed that the pore pressure was not this high especially in the outer and upper 25 feet of the embankment. An analysis was conducted using pressure contours developed from the piezometer readings. A circular search showed a minimum F=1.63 with the surface passing through a portion of the zone of movement. A wedge shaped shear surface through the zone showed F=1.87. A total stress analysis with a the shear surface passing through the zone of movement shows F=1.24 using the conservative strength assumption (c=.5 tsf) in the zone of movement. Results of these analyses are shown on Plate 92.

CHAPTER 7

INSTRUMENTATION

7-01. General. The initial installation plan for observation devices included instrumentation to monitor pore pressure in the embankment and the foundation clays and shales, the effectiveness of the cutoff trench and grout curtain, the foundation and embankment settlement, and the horizontal and vertical movement of the embankment. The piezometers were to be installed in three lines at stations 93+00 (valley section), 97+00 (closure section), and 98+70 (conduit section). Based on previously experienced high construction pore pressures in the foundations at other dams in the Kansas City District, the majority of the instrumentation devices were open tube and gas operated piezometers installed in the foundation overburden and shales. Piezometers were also installed in the foundation overburden upstream and downstream of the cutoff trench to check its effectiveness and in the embankment to monitor construction pore pressure. Alignment monuments were installed to detect slope movement as the embankment was being topped out while crest settlement monuments were installed soon after the embankment was topped out to monitor vertical movement. The initial instrumentation plan included 14 open tube piezometers, 12 gas operated pore pressure cells, 7 crest settlement monuments, 3 foundation settlement plates, and 21 alignment monuments total in one upstream and one downstream line. However, because of high construction induced pore pressures in the left embankment which developed during Stage I construction, additional observation devices were installed to monitor movements and pore water pressures particularly in the embankment. The monitoring program was expanded and further complicated by the development of gas in the open tube devices and concerns for the reliability of the devices. A discussion is included in Chapter 8 and Enclosure 1. It should be noted that all devices are thought to be influenced by gas and that the magnitude of the measuring error has no been determined although considerable effort has been directed to that end. At the time of this report, the instrumentation includes: 52 open tube piezometers of various design, 22 gas operated pressure cells, one vibrating wire piezometer, 23 alignment monuments total in 3 lines, 3 foundation settlement plates, 7 crest settlement monuments, and 4 inclinometers. The locations of these devices are shown in plan view and cross section on Plates 35 through 41.

7-02. Piezometers.

a. Open Tube Piezometers. A total of 62 open tube piezometers have been installed in the embankment, foundation, and abutments of Longview Dam since construction began. Ten of these instruments were abandoned; 8 because they were to be submerged upon reservoir filling, one because it was on the embankment centerline and could not be read after embankment completion, and one because it was broken 29-feet below the top of the riser and could not be repaired. There are a total of 52 open tube piezometers remaining on the project of three basic types. There are forty-one 3/4-inch PVC piezometers with slotted tips, four 3/4-inch PVC piezometers with 1/16-inch perforations, and seven 2-inch PVC piezometers with slotted tips. The open tube piezometer installation details are shown on Plate 42.

The 3/4-inch piezometers with slotted tips consist of 6.5-foot long sections of 3/4-inch inside diameter, schedule 80, PVC pipe. On early

installations, the sections of pipe were connected with stainless steel threaded couplings whereas the later installations utilized flush joint PVC pipe. All of the 3/4-inch piezometers terminate in sensing tips consisting either of a 1.5-inch diameter by 18-inch long, #20 (0.020-inch) slotted PVC pipe or a 2-inch diameter by 24-inch long, #10 (0.010-inch) slotted PVC pipe. Sand surrounds each tip and fills the borehole so as to be in contact with the zone or zones to be monitored. Where a single zone was to be monitored, a 4-foot seal of bentonite balls was placed above the sand with a 5 percent bentonite-cement grout filling the remainder of the hole. Piezometers installed to monitor several strata are all located on the right abutment and have a one-foot seal of bentonite balls above the sand with the remainder of the hole (3-foot minimum) filled with a 1 to 1 sand and granular bentonite backfill.

The 3/4-inch piezometers with 1/16-inch perforations are similar to those described above with the exception that, on 6-foot centers, 1-foot long sections of the schedule 80 PVC riser pipe were patterned with 1/16-inch holes. This pattern of perforations and the sand backfill around the riser was continued to within approximately 14 feet of the ground surface where a 1-foot thick bentonite ball seal was placed. The remainder of the hole was then filled with a 1 to 1 granular bentonite and sand backfill. All of the 3/4-inch piezometers with perforated risers are located on the abutments.

The 2-inch diameter piezometers with slotted tips are also similar to the 3/4-inch piezometers with slotted tips with the exception that, regardless of slot size, all of the tips are 2 inches in diameter. All of the 2-inch piezometers except PPE92-2 are located in the foundation overburden downstream of the right abutment and carry the prefix "W-". PPE92-2, the only 2-inch open tube piezometer in the embankment is made of glued joint PVC pipe.

Where 3/4-inch piezometers were brought up through the embankment, 5-foot lengths of 2-inch I.D. PVC protective pipe surround the 3/4-inch pipe above the original installation borehole (Plate 43). The fill was compacted directly against the protective pipe. The 5 foot sections are joined using double bell slip couplings with rubber sealing rings to accommodate movement and settlement.

Several open tube piezometers produce large quantities of gas which makes evaluation of data difficult due to widely and rapidly fluctuating water levels. The presence of gas in open tube piezometers was identified early in construction and an investigation to identify the type of gas was undertaken. The collection and identification processes are documented in Enclosure 1. The piezometers that have experienced problems with grant are PPE92-1, PPE95-1, PPE97-13, PPE97-14, PPE99-10, and PPE99-13, all of which are located either in the upstream or downstream random or impervious zones. A 2-inch diameter open tube piezometer (PPE92-2 data plcts shown on Plates 109 and 110) was installed adjacent to a 3/4-inch open tube piezometer (PPE92-1 data plots shown on Plates 107 and 108) which had been giving inconsistent data due to gas. Both devices were installed with the tips at the same elevation. The 3/4-inch device had a water level at the top of the riser and would periodically overflow and would erupt after a pressure gauge was removed. The 2-inch piezometer stabilized at a level about 20-feet below the ground surface and showed a steady decrease in water level as would be expected. In attempts to prevent the 3/4-inch devices from overflowing and to stabilize the fluctuating

water levels, pressure gauges and air release valves were installed on the risers. Although 3/4-inch risers should de-air themselves, the air release valves have not proven entirely effective and in several cases the pressures indicated by the piezometers increase substantially when a gauge and air release valve are added due to gas partially displacing water in the riser (Plates 107 and 108). The existence of gas in the piezometers and its effect on water levels is not as extreme as it has been in the past, although it does continue to be a problem.

b. <u>Gas Operated Piezometers</u>. A total of 32 gas operated (pneumatic) piezometers have been installed in the embankment and foundation of Longview Dam, of which, 22 remain functional. Three instruments were destroyed by a 1782 flood, two were destroyed by construction equipment, four were abandoned because of water in the pressure leads or a diaphragm failure, and one indicated pressures above the range of the readout device. Of the 22 remaining gas operated piezometers at Longview, 18 are Sinco Model 51471 pore pressure transducers (2-tube) with "Norton" (low air entry) filters, 3 (PPE99-8, PPE99-12, and PPE99-15) are Petur model P-100 pneumatic piezometers (low air entry filter), and 1 (PPE99-11) is a Sinco Model 51471 pore pressure transducer with a "Coors" (high air entry) filter. PPE99-8 and PPE99-11 were installed within 5-feet horizontally and 12-feet vertically of each other for comparison purposes (Plates 116 through 119).

Each of the three types of gas operated piezometers were installed differently and the installation details are shown on Plate 42. The standard Sinco 514/1 transducers were installed in 3.5 feet of saturated sand in a 6-inch diameter borehole. Above the sand, the hole was sealed with 4.5 feet of bentonite balls. The remainder of the hole was then filled with a 1 to 1 mixture of sand and granular bentonite. The Petur P-100 pressure cells were installed in existing 3/4-inch I.D. PVC open tube piezometers. The transducer was placed in the PVC riser and 8 feet of saturated sand was placed in the riser. A 1-foot thick plug was then formed around the pressure leads inside the riser using a water sensitive expanding polymer. The riser was cut off I foot below the surface of the fill under construction and the remainder of the riser was filled with sand. A 1-foot thick bentonite ball seal was placed over the top of the cut off PVC riser and embankment construction continued over the bentonite seal. The Sinco 51471 with the high air entry Coors filter was installed in an existing 2-inch diameter PVC piezometer. The 2-inch riser was filled with saturated sand to within 8 feet of the surface of the embankment. Bentonite balls were then placed in the remaining 8 feet of riser to form a seal. Again, embankment construction continued above the bentonite seal.

Five of the existing gas operated piezometers have begun, or continue, to provide erratic readings and have water in the pressure tubing at least intermittently. These problems are believed to be due to the piezometers and the associated tubing approaching the end of their useful life expectancy. The possibility of continuing to obtain useful readings from these devices is questionable. Difficulties have been encountered in reading the following devices: PPE93-1, PPE93-6A, PPF97-9, PPF99-1, and PPE99-6.

c. <u>Vibrating Wire Pressure Cell</u>. The vibrating wire piezometer, PPE99-18, is a Geokon Model 4500. The vibrating wire piezometer cell was placed in a 1.5-inch diameter vertically slotted PVC pipe filled with

il pounds per gallon kaolinite slurry (Plate 42). The leads to the cell were extended from the top of the 1.5-inch diameter pipe through a length of 3/4-inch PVC pipe. This length of pipe was also filled wich kaolinite slurry and sealed 4.7-feet above the piezometer tip with a plug of water sensitive expanding polymer. A 6-inch diameter leather collar was placed around the 3/4-inch pipe at the same location as the polymer seal. This entire assembly was then lowered to the bottom of a 6-inch borehole filled partially with the kaolinite slurry using a 0.4-foot long length of 3/4-inch PVC pipe to keep the unit off of the bottom of the borehole. A 4-foot seal of bentonite balls was placed above the leather plug and a 1.5-foot layer of saturated sand placed above that. The remainder of the borehole around the 3/4-inch pipe containing the piezometer leads was filled to the ground surface with a 5 percent bentonite-cement grout. The readout leads for this device are entirely encased in 3/4-inch PVC pipe between the top of the 1.5-inch diameter slotted pipe and monitor box 5 on the downstream crest road shoulder.

7-03. Embankment Piezometric Devices. Following completion of the Stage I left embankment, high pore pressures were measured in the lower part of the embankment. Between the Stage I and Stage II contracts, overflowing water levels and quick recoveries after pumping were found in the protective casings of several devices in the closure section. It appeared that the protective casings and the risers were acting as separate measuring devices. The protective casings were apparently registering higher pore pressures at points higher in the embankment, possibly near the mid-height. These pressure levels apparently exceeded 50 percent response. An extensive investigation was undertaken to determine the extent of the high pore pressures and the adequacy, including stability, of the embankment. The investigation involved undisturbed sampling and testing, inspection of in place embankment material from two large diameter auger holes, installation of additional instrumentation to monitor pore pressures and slope movement, dye injection, and pump tests. A complete discussion of the investigation is contained in Enclosure 1. The investigation revealed construction induced pore pressures in the left embankment backfilled excavations below approximate elevation 810 ranging up to about 75 percent. Between approximate elevations 820 and 830, above the backfilled excavations, pore pressure responses were between 50 and 60 percent. No pore pressures were present in the top 20 feet of the Stage I

Most of the piezometers installed in the embankment measured induced construction pore pressures after completion of the embankment and continue to do so. In general, piezometers located in the cutoff trench and adjacent to the conduit registered the highest pore pressure levels upon embankment completion with some indicating pore pressure of up to 63 percent, or about 65-feet above the top of the dam.

Construction pressures in the embankment remain high especially in the cutoff trench and around the conduit (40 to 55 percent pore pressure response). Most of the piezometers are showing a pressure dissipation of about 1 to 5-feet per year in the embankment although some have not begun to show pore pressure dissipation.

Piezometers installed in the embankment indicate pore pressure levels above the pool elevation, therefore the effect of pool filling on the embankment piezometers has yet to be determined.

All piezometers on the project are currently being read quarterly.

- 7-04. Foundation Piezometric Devices. During construction, little pore pressure developed in the foundation shale or overburden. During reservoir filling, piezometers located in the foundation overburden on the upstream side of the cutoff trench indicated nearly full reservoir head which was apparently being transmitted through the basal gravel layers. The piezometers located in the upstresm foundation overburden still indicate nearly full reservoir head. however, no significant pressures are being transmitted downstream. The only other foundation piezometer to show high pressures was PPF99-4 with its tip in the Pleasanton Zone E formation (Plates 114 and 115). It built up pore pressure to an elevation of 880 shortly after construction was completed and has dropped to elevation 837 as of the fall of 1990. Since filling of the reservoir in 1986, all of the piezometers in the Pleasanton Zone E siltstone on the upstream side of the grout curtain have shown a slow, but constant, increase in piezometric level. These increases have been anywhere from 8 to 14 feet with PPF86-1A on the upstream right abutment showing the largest increase (Plate 102). The piezometers in the Pleasanton Zone E siltstone on the downstream side of the grout curtain have shown general decreases in measured pore pressure from 1 to 14 feet except for PPF87-3 as noted in the "Abutment Piezometric Devices" section below.
- abutment Piezometric Devices. Piezometers located in the right abutment bedrock, downstream of the grout curtain, rose as the pool filled lagging the pool generally on the order of 14 feet. This prompted the installation of piezometers in various geologic members to determine which ones were transmitting pressure. Some pressure testing and bail tests were done as the holes were being drilled. It was found the formations transmitting the high pressures included the Pleasanton Zones A & B, as well as the Middle Creek limestone and Hushpuckney shale. Piezometers were also installed in the pervious drain after excessive water was noted exiting the pervious blanket. Piezometer readings indicated the pervious blanket was completely saturated and even pressurized in some areas. It was concluded that the excessive water was coming from seepage through the right abutment bedrock. No other problems have surfaced due to these high pressures and it appears that seepage through the right abutment is being controlled and collected by the pervious blanket.

The piezometers in the Pleasanton Zone E siltstone on the downstream side of the grout curtain have shown general decreases in measured pore pressure from 1 to 14 feet except for PPF87-3 (Plate 103). PPF87-3 has shown a 3 foot increase in the measured piezometric level in the Pleasanton siltstone since 1986. This increase is most likely due to migration of high pressures from the overlying Hushpuckney shale, Middle Creek limestone, and the Pleasanton Zones A and B.

Seepage pressures remain high in the right abutment bedrock and are influenced by the pool. A steady flow continues to exit the pervious blanket as a result of this seepage. This causes the toe ditch to remain wet and causes a maintenance problem in this area. No other problems have surfaced due to these high pressures.

7-06. Inclinometers. There are three inclinometers installed through the upstream slope and one through the downstream slope. All are between stations 97+00 and 99+00 (Plate 36). All of the inclinometers are constructed of 3.38-inch outside diameter, grooved aluminum casing (Plate 43A). The casing was installed in 10-foot lengths and joined with 3.63-inch outside diameter by 12-inch long telescoping aluminum couplings. The casings were pop-riveted to the couplings with aluminum rivets and a gap was left between subsequent casings to allow for settlement of the foundation or embankment. In the foundation overburden, a 12-inch gap was left between casings while a 6-inch space was left between casings that passed through the embankment. Each inclinometer is sealed at the bottom with a pop-riveted plastic cap and protected at the surface of the fill by a 6-inch diameter, lockable, galvanized steel pipe.

I-97-1 and I-99-2 were installed in 7-inch flight augured boreholes through the partially completed embankment and foundation overburden. The bases of the inclinometers are seated in holes drilled using a 5-5/8 inch rock bit in the foundation rock. Pea gravel was used as backfill material in the annulus around the inclinometer casings. A short length of 6-inch diameter steel pipe filled with pea gravel was placed around the inclinometer at the surface of the fill. As the embankment was brought up, the fill was compacted directly against the 6-inch pipe. After each few lifts, the pipe was raised to the new fill surface leaving the pea gravel in direct contact with the compacted embankment material. This process was repeated until the final surface of the fill was reached where a l to l cement grout seal was placed. I-99-1 was installed after completion of the embankment at the device, in a borehole drilled entirely with a 6-1/8 inch rockbit through the embankment, foundation, and into the foundation rock. Pea gravel was placed in the annulus around the inclinometer casing and a 4-foot long seal of bentonite balls was placed around each coupling. I-99-3 was also installed after completion of the embankment adjacent to the bridge abutment and the borehole was made using a 5-7/8 inch rockbit exclusively. A 1:1 cement grout fills the annulus between the inclinometer casing and the borehole walls.

Inclinometer I-99-1 was installed at station 95+40, range 2+57 downstream (Plate 41) in September of 1984, one month prior to topping out of the embankment. This device has shown a total movement of 4.7 inches most of which occurred between elevations 803 and 829 prior to September of 1986 (Plate 121 and 122).

Inclinometers I-97-1 (station 97+49, range 1+89 upstream) and I-99-2 (station 98+25, 0+85 upstream) were installed after the Stage I embankment was completed and were extended through the embankment as it was constructed (Plate 41). I-97-1 has shown a total upstream movement of 7.5 inches most of which occurred between elevations 823 and 842 (Plate 124).

I-99-2 has shown approximately 8.2 inches of upstream displacement, most of which took place in the top 4 feet of the fill and between elevations 819 at the bottom of the inclinometer and 856 (Plate 122). Most of the movement at the base of the device occurred as the embankment was being topped out or shortly after completion of the embankment. The movement shown in the top 4 feet of the embankment is attributable to the placement of a concrete work pad on the up slope (downstream) side of the device. The concrete pad was in contact with the protective pipe around the inclinometer and has caused the

top section of the inclinometer to lean upstream. Neglecting the movement shown in the top 4 feet of the embankment, I-99-2 shows 6 inches of total upstream movement.

Since October of 1987, I-99-2 has been experiencing a problem with "silting in". Between October of 1987 and September of 1990, the sounded depth of this inclinometer decreased 15 feet from 108.8 to 93.8 feet. This "silting in " is reflected by the progressive upward shifting of the bottom of the readings on the movement versus depth plots shown on Plate 122. The loss of the lower 15 feet of the instrument is also evidenced by the shifting of the data plots to the right as the incremental movement shown in the lower portion of the instrument is lost. The exact nature of the material in the inclinometer and the cause for the silting is currently unknown. Flushing of the casing and sampling of the material is planned. If it is found that substantial quantities of embankment materials are found in the instrument, it will be abandoned by grouting the casing full.

I-99-3 was installed at station 98+50, range 1+80 upstream adjacent to the tower bridge abutment (Plate 41). During and after construction, this device indicated lateral spreading of the embankment in the conduit section on the order of 4.5 inches (Plates 123 and 124). This spreading resulted in movement of the control tower bridge abutment and complete closure of the expansion joints at both the bridge abutment and pier. Most of the movement occurred between elevations 816 and 837 with a fairly concentrated zone of 1.9 inches of incremental movement at elevation 826.3. As a result of this movement the embankment stability was checked (see Chapter 6). Repair of the bridge abutment and reestablishment of the tower bridge expansion joints was accomplished by contract in the spring of 1990.

No substantial movement has been shown by any of the inclinometers since 1987. All four inclinometers are currently being read twice a year.

7-07. Alignment Monuments. The alignment monuments on the downstream line "A" and upstream line "B" consist of 18-inch diameter by 8-foot deep reinforced concrete monuments (Plate 43). Alignment line "A" is located 200-feet downstream of centerline between stations 87+50 and 101+00 and contains 8 monuments on 200-foot centers. Line "B" is located 170-feet upstream of the embankment centerline between stations 87+00 and 103+50 and contains 9 monuments on 200-foot centers (Plate 36). In addition to alignment monuments, each line has two instrument monuments; one on each abutment.

As previously noted, lateral spreading of the embankment in the conduit section caused movement of the control tower bridge abutment and complete closure of the expansion joints at both the bridge abutment and pier. Alignment line "C" was installed to monitor the tower bridge abutment movement and consists of only one alignment plate and two instrument monuments (Plate 43). The alignment plate is located at station 98+66, range 1+77 upstream, and is installed on the north end of the east bridge parapet over the abutment. There is not a concrete monument installed at that location, only a stainless steel instrument plate mounted on the bridge parapet. Line "C" uses the same left abutment instrument monument as the upstream line "B". A separate instrument monument for line "C" exists on the right abutment upstream of the monument for line "B" to allow a straight shot across the bridge abutment.

Initial readings on all three lines were taken three times and the results averaged to establish a zero reading. The initial readings of lines "A" and "B" were taken in July of 1985. The initial reading of line "C" was taken in March of 1986 after installation of the alignment plate. "A" on the downstream slope has experienced the most overall movement with a maximum total movement of 1.7 centimeters at monuments A-5 and A-6 at stations 95+00 and 97+00 respectively (Plate 98). The maximum total movement of 1.4 centimeters of the upstream line is shown by monument B-3 at station 91+00 (Plate 98). Vertical surveys taken on each monument indicate maximum settlements since installation on the downstream line at monument A-6 which shows a total settlement of 0.19 feet (Plate 99). The maximum settlement on the downstream line is 0.14 feet at monument B-4 at station 93+00 (Plate 100). Line "C" has indicated no movement or settlement since installation since all bridge abutment movement took place prior to installation of the monuments. All alignment monuments on the project are currently being surveyed semiannually.

7-08. Foundation Settlement Plates. Three mechanical foundation settlement plates were installed during construction in 1983. These devices were installed at stations 91+00, 93+00, and 96+00 and are downstream of the embankment centerline 40, 50, and 75 feet respectively (Plate 36). SPPF91-1 and SPPF93-7 consist of a 36-inch square, 1/2-inch thick steel plate set approximately 1-foot below the embankment/foundation contact (Plate 43). plate of SP96-1 is also a 36-inch square steel plate but it is installed approximately 10-feet above the pervious blanket as opposed to below the blanket at the foundation contact as is the case with the other settlement plate installations. The location of the plate allows SP96-1 to monitor settlement in approximately the lower 13 feet of the embankment. To allow monitoring of changes in elevation of the plates, a 1-inch diameter standard galvanized pipe is connected to a flange bolted to the plate. The 10 inches of galvanized pipe immediately above the plate is perforated with 12, 1/16-inch holes to allow monitoring of pore pressures as well as settlement. (The use of all three settlement plates to monitor pore pressures was discontinued in May of 1986 due to the presence of heavy oil in the riser.)

As noted on the plots, there was no reliable settlement data recorded between August of 1984 and May of 1985 since the contractor failed to record a riser extension (Plate 97). It was assumed that no settlement took place during this period. The three settlement plates indicate that the bulk of foundation consolidation had occurred by October of 1984 with only small settlements since that time. The range of settlements indicated is between 0.5 and 0.8 feet with SPPF96-1 showing the greatest settlement. The maximum current rate of settlement shown by the settlement plates is less than 0.1-foot per year. See section "Crest Settlement Monuments" below for discussion and comparisons of the foundation settlement plates and crest settlement monuments. All foundation settlement plates on the project are currently being surveyed annually.

7-09. Crest Settlement Monuments. On completion of the dam in 1985, seven crest settlement monuments (CSM's) were installed in a single line on 200-foot centers along the crest of the dam (Plate 36). The monument line runs along the inside edge of the downstream guardrail of 109th street at approximate range 0+36 downstream. The monuments are 6-inch diameter by 6-foot deep auger holes filled with reinforced concrete. The monuments are

capped with a standard brass monument cap set flush with the bituminous roadway surface (Plate 43). Four of the brass monument caps were damaged by snowplows in 1987 and it may become necessary to relocate the crest settlement monuments to the downstream side of the guardrail to prevent this type of damage from recurring.

As noted above, the crest settlement monuments were installed in July of 1985 and have since shown between 0.1 and 0.35 feet of settlement (Plates 95 and 96). CSM-4 at station 94+50 over the old river channel shows the maximum crest settlement. The crest settlement monuments are currently being read once a year and currently indicate settlement rates of less than 0.1-foot per year.

CSM's 2, 3, and 5 are located at roughly the same respective stations as settlement plates SP91-1, SP93-7, and SP96-1. Comparisons of the total settlements shown by CSM's 2 and 3 and settlement plates SP91-1 and SP93-7 indicate that approximately 70 percent of the total settlement that has occurred since 1985 has been embankment settlement. As noted above, the plate for SP96-1 is installed approximately 10-feet above the pervious blanket which allows it to monitor settlement in approximately the lower 13 feet of the embankment. Settlements indicated by CSM-5 and SP-96-1 are closer in agreement than the other comparisons and it is indicated that approximately 90 percent of the embankment settlement shown by the crest settlement monuments is occurring in the lower portions of the embankment which are not monitored by SP91-1 and SP93-7.

7-10. Top of Dam Profiles. Surveys are made annually of the top of the New Jersey barriers and the top of the dam at the downstream edge of the barriers between the lanes of 109th street across the dam (Plate 94). As noted previously, the roadway surface across the dam is below the theoretical top of dam elevation of 926.6 by approximately 1.2 feet and the New Jersey barriers are considered to account for the remaining required freeboard. The elevations taken after the September 1989 repair of the low spot on the left abutment are shown in the top plot on Plate 94.

The maximum settlement shown by the top of dam surveys occurs at station 94+50 over the old river channel and is approximately 0.3 feet. This data confirms the location and magnitude of settlement shown by the crest settlement monuments.

CHAPTER 8

CONSTRUCTION NOTES

8-01. General. Major sewer construction work in the reservoir area was a significant concern in planning for the construction of the dam. Closure of the embankment could not occur until the sewer was complete because of the potential to inundate the sewer construction area within the reservoir. Since it was unknown at the time of preparation of plans and specification when the sewer construction would be complete, the District decided to construct the dam in two stages. This created some problems with trying to minimize the number of temporary slopes and "tie-ins," however, a construction plan was developed with this objective in mind. The plan was complicated not only by the existing sewer which crossed the proposed foundation and the necessity for the sewer to remain in service at all times, but also by the relatively narrow valley and the fact that the best available upstream borrow was located in low-lying areas next to the river channel. To minimize "tie-ins" the plan proposed building the minimum embankment necessary in Stage I reior to diversion and closure in Stage II. This embankment was to be only that necessary for the cofferdam (except the closure section). Stage I required construction of the outlet works (conduit and sewer), diversion of the sewer, and removal of the existing sewer. It required excavations for the outlet works including the outlet channel and a river diversion channel. Cutoff trench excavation and foundation grouting was included in Stage I as well as backfilling the cutoff trench for the right and left embankments. To minimize the amount of low-lying impervious material that had to be stockpiled, it was decided to include placement of the downstream conduit embankment to elevation 867. Stage II construction included diversion of the river, construction of the closure cofferdam, the remaining portions of the downstream embankment, and raising the entire embankment to final elevation. The construction plan allowed a considerable portion of the Stage II embankment to be constructed without temporary slopes or "tie-ins." However, the configuration of the Stage I embankment and the cofferdam was not ideal since it consisted of many small pieces.

8-02. Stage I Contract. The Stage I contract, DACW41-79-C-0114, was awarded to W. A. Ellis Construction Company, Kansas City, Missouri, on August 24, 1379, for the low bid of \$11,865,103.00. Construction began in September 1979 and was completed in October 1982. Ellis Construction Company's previous experience was primarily in highway and sewer construction projects, they had never constructed a dam, nor did anyone with the company have any dam building experience. This lack of experience was compounded, especially early in the contract, by the fact that the Government did not have a resident engineer on the job full-time. The project was administered by an area engineer who visited the project only periodically and an inadequate staff. This led to immediate problems with rock excavation, foundation treatment and preparation, care of rock surfaces and especially material usage. Early in the project the specifications were often totally ignored. After these administrative problems became apparent a full-time resident engineer was assigned to the project and was given a very capable staff. The project ran much better in that the specifications were being enforced; however, the early problems led to hostile relations between the contractor and the resident office. Strict interpretation and enforcement of the specifications led to a substantial claim involving a variety of issues, the most significant of which related to

material usage from the borrow. Additionally, because of these problems and unexplained observations of the left embankment and instrument monitoring devices, serious concerns for the integrity of the Stage I embankments surfaced. The embankment experienced relatively high pore pressures apparently related to fill placement which tended to be wet of optimum and the rather complex configuration of the embankment pieces. The high pore pressures were complicated by an unexplainable accumulation of gas in the monitoring devices. An extensive investigation was conducted to determine the stability and adequacy of the Stage I embankments. The borrow area problems, embankment investigation and other pertinent features are discussed below.

a. Borrow. Much of the low liquid limit material needed for the impervious fill and the stockpile for Stage II was easily available only in, close-in, low-lying areas along the river. The other areas of the borrow contained some low liquid limit material however, it was usually overlain by high liquid limit material unacceptable for use as impervious. On previous dam construction projects, as on this one, the Government had done enough exploratory work to ensure that sufficient quantities of the desired material were available in the borrow; but usually this exploratory work was not sufficiently detailed for the actual construction. Detailed explorations were expected of the contractor; specifications clearly state this as the contractor's responsibility. However, the contractor did no exploratory work to classify material in the borrow and placed a large quantity of the close~in low liquid limit materials in the berm and random fill zones early in the job. He then began experiencing problems finding acceptable material for use in the remaining impervious zone in the left embankment and to complete the impervious stockpile required for Stage II construction. This material could not be readily classified visually because there was not a discernible difference in color and the material typically ranged in liquid limit between about 45 and 60. Visual classification techniques using toughness of the PL thread are not precise enough for most individuals to differentiate between materials with LL just below 55 from those just above 55. The contractor was directed to do exploratory work in the borrow; however, not enough quantity was found to complete either the left embankment or the impervious stockpile. An analysis of the borrow area, and of materials placed in the berm and random zones for the claim revealed that more than enough impervious had been available in the borrow to meet the fill quantities required. In fact, the analysis showed that some 180,000 cubic yards of impervious was placed in the berm zone, and 75,000 cubic yards in the random zone. Only 40,000 cubic yards had to be deleted from the Stage I contract quantities for the left embankment and the impervious stockpile.

b. Outlet Works Excavation.

(1) Conduit-Sewer. The conduit-sewer excavation began in the fall of 1979. The floor of the excavation was 25-feet wide upstream of the cutoff trench and 30-feet wide downstream of the cutoff trench (see Plate 12 for excavation plan). The overburden excavation averaged 20-feet deep with 1V on 2.5H slide slopes. The majority of the excavated overburden was used for the impervious stockpile. The rock excavation averaged only 2 to 4-feet deep and was performed with backhoes, jackhammers, or dozers with the exception of the intake tower area where a rock saw was used to make the necessary vertical cuts. The rock surface was brought to final grade using a "roto mill," a large track-mounted cutting roller. Air-water jets were used to clean off the

final bedrock surface prior to placing the specified 6 inches of fill concrete. It was required the bedrock be excavated to firm rock, so in some places additional fill concrete had to be placed to bring the final fill concrete surface to grade. The contractor elected to over excavate the east slope to provide for a 30-foot wide workbench along the tower area (0.W. station 45+00 to 46+00) and 20-foot wide bench along the conduit section. During the conduit-sewer excavation several slides occurred along the left abutment.

- (a) Sewer Excavation Slide. On November 18, 1979 a slide occurred on the left side of the sewer excavation between outlet works (0.W.) stations 55+00+ to 57+00+. The slide moved on a slickensided surface in the weathered shale which underlies the talus. The horizontal movement at the head of the scarp was in excess of 8 feet and the depth to the failure plane varied from a few feet to 8 or 10 feet. The failure took place just after the excavation had been made at the toe of the natural abutment slope. (See Photo 13.) After the initial failure, additional exploratory holes were drilled and the slide area was analyzed and monitored. Through the winter of 1980, additional movement was experienced and the slide area increased. Because of the continued movements, there were concerns regarding long-term stability of the area. It was felt the slide would not adversely effect the stilling basin or the outlet works; however, continued movement would not be tolerable to the relatively rigid new sanitary sewer pipe to be located on the left side of the outlet works. Therefore, the proposed new sanitary sewer was relocated to the right side of the outlet works by Modification 6. The new sewer alignment is shown on Plate 12. The slide area was repaired by removing the slide material from the excavation and backfilling the sewer excavation to elevation 820 with the excavated overburden from the left abutment as part of Modification 16. The backfill was placed in 8-inch lifts, compacted with even routing of hauling equipment and the final surface sloped to drain away from the abutment.
- (b) Left Abutment Slides. During the winter of 1980, three additional shallow slides occurred in overburden on the abutment side of the conduit excavation between 0.W. stations 50+00 and 52+00. These slides were each about 50-feet wide and extended about halfway up the slope from the base of the excavation. Then again in December 1980 another slide occurred in the same area. In order to prevent further sliding of the left abutment overburden, the contract was modified to require all left abutment overburden between the cutoff trench and the downstream toe of the embankment be excavated to rock.
- (2) Outlet Channel. In the late summer of 1980, the outlet channel alignment was modified to avoid the guy wires of a newly relocated power line. The outlet channel was moved toward the east downstream of 0.W. station 60+41. This new alignment also eliminated the need to relocate an existing gas line.
- (3) Approach Channel. The approach channel parallels the new sewer relocation which was constructed under separate contract concurrently with Stage I construction. Originally the entire approach channel excavation was to be performed during Stage II to prevent the confusion of having separate contracts in the same area. However, the majority of the approach

channel excavation was performed by the sewer contractor during the installation of the adjacent sewer. Therefore, only minor excavation was necessary during Stage II to bring the approach channel to grade.

c. Sewer Relocation. Prior to constructing the embankment, the existing 48-inch sanitary sewer located on the right and parallel to the outlet works had to be diverted through the relocated sewer beneath the conduit without interrupting service and then removed. Construction of the dual 54-inch sewer pipes located under the conduit and the removal of the existing sewer pipe within the limits of the dam were included in the Stage I contract. The remaining sewer relocation work in the reservoir area and downstream from the dam was performed under a separate sewer contract. As previously discussed, the new sewer alignment originally located on the left side of the stilling basin was moved to the right side by Modification 6. Because of this alignment change the new and existing sewers crossed. Therefore, prior to constructing the new sewer, the existing sewer had to be temporarily taken under the new sewer by an inverted siphon which was added to the contract by Modification 37. The conduit-sewer structure was completed by the fall of 1980 but the actual sewer diversion did not take place until July 1981. The existing sewer and all of the bedding material was removed shortly after diversion. The majority of the existing sewer was located on bedrock so the excavation and foundation cleanup performed was similar to the cuto ? trench. The contractor excavated end cleaned up to 50 feet at a time and used air jetting for final cleanup of the shale. The sewer excavation was to be backfilled with impervious (LL<55), however, the contractor was also allowed to use fat clay. The downstream pervious blanket was placed directly over the sewer backfill rather than along the excavation limits. All of the existing sewer pipe was removed except the inverted siphon. It was left in-place and pumped full of sand to prevent the water flowing through the sand blanket adjacent to the conduit from building up pressure upstream of the new sewer.

d. Cutoff Trench.

(1) Excavation. The cutoff trench was excavated to bedrock between station 86+00 and 104+00. The floor of the excavated trench is 30-feet wide and the side slopes are 1V on 2H in the overburden and 1V on 1H in the bedrock. (See Plate 11). The contractor began excavating the trench along the valley, then proceeded to the left abutment and finished the trench excavation with the right abutment. The overburden thickness varies from O feet on the abutments to as much as 29 feet in the valley. The majority of the excavated overburden was placed in the impervious stockpile or temporarily stockpiled for future use in Stage I. The rock excavation was performed primarily by backhoes or presplit blasting to minimize damage to the rock surface. The specifications restricted blasting within 100 feet of concrete or grout less than 7 days old or within 50 feet regardless of age. Therefore, the majority of the blasting along the cutoff trench was completed prior to curtain growting and all of the blasting on the left abutment cutoff trench was completed prior to placing the outlet works structural concrete. As previously mentioned the cutoff trench was excavated to grade prior to grouting with the exception of the shales which were left 2-feet high to protect the underlying shale from drying out and weathering. All curtain grouting was performed from the floor of the cutoff trench (Photo 14) and is discussed in more detail in the Construction Foundation Report. The cutoff trench excavation and curtain grouting was performed in the dry. The river

had to be temporarily diverted to perform cutoff trench excavation and curtain grouting within the river channel. The contractor made little or no effort to control surface runoff or groundwater in the cutoff trench between grouting operations and backfilling.

(2) Backfilling. The cutoff trench was backfilled with impervious fill and a 6-foot wide pervious drain on the downstream side of the trench (see Photo 16). In mid June 1980, the contractor began backfilling the cutoff trench at approximately station 93+60 and proceeded towards the right abutment. There were several areas along the upstream slope where water was seeping from the clayey gravel zone directly above the shales. Initially the contractor only had two pumps with sumps located wherever low areas existed which resulted in the contractor chasing water from location to location. The first lift of backfill placed on the shale was I to 2-feet thick and in some cases was placed in standing water. Two test pits were dug between station 91+00 and 92+00 to observe the fill-shale contact and the overall backfill condition. They indicated a zone of very soft wet fill existed at the shale contact, varying in thickness from 1/4 inch to 1 inch. The contractor was required to remove and replace this unacceptable lift. The removal of this lift is shown in Photo 15. After these initial problems, the contractor's operation improved. In order to control lift thickness and ensure an adequate fill-shale contact, the contractor was directed to use special backfill for the initial shale covering which required 3-inch lift hand compacted. The backfill was brought up to a depth of 6 inches, then the next lift was compacted with a rubber tired loader. The seepage along the basal gravel was easily handled with additional pumps and pump pits.

Between station 90+10 and 91+10 several 5 gallon cans with the bottoms removed were used to collect the more concentrated seepage from the gravel zone directly above the bedrock. The 5-gallon cans were placed directly on bedrock and as the backfill progressed, additional cans with the tops and bottoms removed were placed on the initial cans. The water that collected in the cans was pumped out. After three layers of cans were installed (4.5 feet of head) the cans were filled with sand and the impervious fill placement continued.

The contractor was allowed to place fat clay rather than lean clay in the lower 5 to 6 feet of the cutoff trench (below the water table). The liquid limit restrictions were reportedly raised in this area because the excavation was wet and lean clay absorbs water more easily than fat clay, thus, the lean clay was thought to be more likely to become unworkable than fat clay. Prior to changing the liquid limit requirements the effect of the potentially lower shear strength on stability analyses was considered. It was determined that weaker material in this location near the top of rock at the centerline would not adversely affect the stability of the embankment.

The original specification required the pervious fill be placed in 12-inch lifts and compacted with three passes of a 5-ton vibratory roller or 4-inch lifts and compacted to 80 percent relative density with a plate vibratory compactor. The three passes with a vibratory roller were only achieving 75 to 80 percent relative density and the 80 percent relative density was extremely difficult to obtain using a hand compactor. Therefore, the compaction requirements for the plate vibratory compactor were reduced to 70 percent relative density for the pervious fill placement.

e. Abutments. Originally, only that portion of the excavation and foundation treatment within 75 feet of the cutoff trench and within the limits of the Stage I embankment was to be performed under Stage I. The excavation and foundation treatment was similar for both abutments. The excavation was performed with backhoes and presplit blasting to minimize damage to the rock surface. Dental concrete was used to fill joints along the excavated limestone slopes and gravity grouting was used to fill the joints along the horisontal ledges. In many places formed concrete was placed against the irregular bedrock face in order to achieve the desired slope and to seal the bedding planes and vertical joints. When the contractor began working on the left abutment it became evident the weathering extended further into the abutments then originally anticipated, therefore requiring additional excavation into the abutment to reach sound rock. Knowing the right abutment was steeper and more weathered, it became necessary to modify the contract and extend the right abutment excavation above the original limits of the top of the embankment (elevation 887). Modification 2 required the overburden and rock be excavated between station 86+00 and 87+40 above elevation 887 upstream and downstream of the cutoff trench within the final embankment limits. This additional excavation provided an adequate workbench for drilling the Bethany Falls limestone and flattened the hazardous near vertical slopes in the Winterset limestone. After the upper right abutment was excavated, the shale formations were covered with a 3-foot minimum layer of soil to protect it from drying out prior to Stage II embankment placement.

The Middle Creek limestone was present in both abutments but was more predominate on the right abutment. This formation was only about 1.5-feet thick and consisted of three distinct beds, two limestone beds with a thin shale bed in between. The upper layer of limestone was extremely jointed and had the appearance of precut limestone blocks thus requiring special care during the foundation treatment adjacent to the random and impervious zones. In order to minimize the disturbance of the rock to remain in-place, the final rock excavation was performed by equipment located on the fill not the bedrock. The three beds were stair stepped and cut to a relatively smooth vertical face. See Photos 18 and 19. The existing joints along the face of the slope were mortar treated and the joints on the top limestone surface were cleaned with air jetting and filled with grout. No heavy equipment was allowed over the Middle Creek formation until 2 feet of special backfill had been placed over it.

The Sniabar limestone was presplit in an effort to make a smoother face to compact fill against and to remove rock with solution cavities. However, on the right abutment the blasting badly fractured the formation resulting in the need for additional foundation treatment. The existing joints were opened and the upper ledge was lifted and broken up. The final treatment of the formation included the removal of upper ledge which caused undercutting of the underlying shales at various locations. The loose material was removed from the fractured face and dental concrete was placed against the irregular surface. Formed concrete was to be placed against the formation where shale undercutting occurred. The initial concrete placed against the Sniabar within the upstream random zone was placed too stiff and was not formed or vibrated. The concrete was simply dumped on the slope and towelled smooth. The contractor was required to remove and replace this concrete due to the voids and the inadequate bonding between the rock and the concrete.

f. Right Embankment. The first embankment to be placed in Stage I was on the right side of the river and was completed in 1980. Prior to any fill placement the diversion channel was excavated and the river was straightened to allow for construction of the embankment on both sides of the river. The Stage I right embankment included the upstream berm and random zones which were placed to elevation 887 and tied into the abutment at the top of the Bethany Falls limestone. It also included a small portion of impervious and downstress random zones. A plan view at the end of Stage I is shown on Plate 17 and the embankment sections are shown on Plates 23 and 24. Photo 22 shows an overall view of the right embankment. The contractor obtained tie majority of the material for the right embankment from the nearby low lying sorrow areas along the river which created considerable difficulty later in the contract. As previously discussed, the low lying borrow areas were the best source of the lean clay and should have been saved for the imperviou zone (LL<55) in the conduit section and the stockpile. However, the contractor elected to place the lean clay in the random (LL<60) and berm (LL-unspecified) zones.

Because several bedrock zones along the right abutment had open joints or were highly fractured a 10-foot zone of clayey gravel was placed directly against the abutment to act as a filter. As the fill placement progressed the supply of clayey gravel diminished. At which time the clayey gravel was only placed against the jointed and broken up limestone formation.

g. Left Embankment. The conduit structure was completed in the fall of 1980 enabling placement of the adjacent embankment upstream of the centerline to begin. Embankment placement downstream of the centerline did not begin until the following spring, and that portion to the right of the conduit section until after removal of the sewer. The conduit section zoning extends from station 97+00 to 101+00 and consists of impervious material with the exception of the pervious blanket and inclined drain. See Plate 24. The internal zoning between station 101+00 and the left abutment originally included both berm and random zones. The contract was modified to change the upstream and downstream berm fill to random fill between stations 101+00 and 102+00. This allowed better utilization of available material, provided a better contact with the limestone surface and eliminated the need for separate zones in an isolated area.

The embankment was brought up evenly on both sides of the conduit. Downstream of the inclined pervious drain, the 3-foot thick pervious blanket was placed in contact with the foundation along the outlet channel excavation and around the conduit. Initially, the contractor had some difficulty obtaining relative density even after the requirements had been lowered to 70 percent. But once an adequate amount of water was placed in front of the compaction equipment, meeting the compaction requirements became easier.

Initially the impervious material (LL<55) for the conduit section was taken from the remaining low lying borrow areas along the river. As the impervious fill placement progressed, the contractor began to deplete the easily identified lean clay sources and had to utilize material from the higher borrow areas upstream of Longview Road. As previously discussed, the material in the higher borrow areas consisted of intermixed lean and fat clay which were difficult to distinguish visually without testing. The contractor did not have an adequate method of classifying and identifying the suitable

impervious material at the borrow pit resulting in the continual direction by the Contracting Officer to remove unsuitable material after placement in the embankment. The problem of identifying suitable material prior to its placement in the embankment and the need for extensive testing continued throughout the remaining fill placement and eventually was the basis for a major claim. Due to the contractor's mismanagement of the borrow areas, there was an insufficient amount of impervious material remaining which could be practically excavated. Therefore, the downstream portion of the embankment was topped out at elevation 867 and the upstream portion at elevation 870 even though the original plan called for a small portion of the upstream left embankment to extend to elevation 887.

- h. Impervious Stockpile. As part of Stage I an impervious stockpile was constructed downstream in order to ensure the Stage II contractor a ready source of impervious after closure (Photo 25). This was necessary since the majority of the impervious (LL<55) material was located in the low lying borrow areas along the river which could periodically become inundated after closure. The contractor began working on the impervious stockpile very early in the contract utilizing the majority of the required overburden excavation from the outlet works and cutoff trench. Placement of stockpile material continued off an on throughout the length of the contract. As discussed previously, the contractor misused most of the easily accessible impervious borrow material and had to use the upper borrow areas where the impervious material was not easily identifiable. As with the impervious zone for the left embankment, extensive testing was performed both at the borrow area and in the stockpile to ensure the material placed had a liquid limit less than 55. Any material found which did not meet these requirements was removed and replaced. The specification for the gravel percentage in the stockpile was not specific and the contractor was allowed to utilize lean clay with more than 5 percent gravel. In the spring of 1982, it was discovered the impervious stockpile was located too far upstream (approximately 120 feet) within the Stage II embankment limits. The contractor was required to remove and relocate about 30,000 cubic yards of material so that it would not interfere with the Stage II embankment. The original stockpile was to be 200,000 cubic yards; however the final stockpile was actually only 170,000 cubic yards. This quantity was reduced at the end of the contract because there was very little impervious material (LL<55) remaining in the designated Stage I borrow areas. This shortage of impervious was basically due to the contractor's mismanagement of the borrow areas as previously discussed.
- i. Modifications. A total of 60 modifications were made to Stage I contract. Only the following 16 pertained to the construction of the embankment.
- No. 2 Required additional overburden and rock excavation on the right abutment above elevation 887 upstream and downstream of the cutoff trench within the embankment toe trace.
- No. 6 Changed the sewer alignment from the left side of stilling basin to the right side.
- No. 14 Required the excavation and backfill of test pit in cutoff trench at station 90+70+.

- Required 1.) The removal of the slide material near No. 16 0.W. station 52+00 and all left abutment overburden to rock downstream of the cutoff trench to the embankment toe 2.) sewer excavation adjacent to the stilling basin be backfilled with excavated overburden. Required the removal of additional limestone at station No. 17 102+98. Required two presplit blasting test section in the Sniabar No. 19 limestone on the left abutment. No. 20 Change the outlet channel alignment to miss existing powerline guy wires. No. 22 Required the removal of two overhangs in the Bethany Falls limestone on the right abutment approximately 125-feet and 147-feet upstream of the dam axis. No. 25 Required the removal of overhang and the adjacent vertical face of Bethany Falls limestone at station 87+35+, 90-feet + upstream of the dam axis. Required removal of fractured rock and resetting nipples No. 26 for grouting in the cutoff trench between station 89+50 and 88+90. No. 33 Required the Sniabar limestone upstream of the cutoff trench be fractured and removed using a non-explosive demolition agent on a IV on IH slope. No. 40 Required the additional rock excavation of the Sniabar limestone in Modification 33 be extended downstream through the cutoff trench using the same non-explosive demolition agent. Changed the upstream and downstream internal embankment No. 41 zoning from berm fill to random fill between station 101+00 and 102+00. Provided additional compensation to the contractor for No. 46 slower rate of placement during curtain grouting due to a tighter rock formation. Required additional presplit and production shooting of No. 48 Bethany Falls limestone upstream of cutoff trench at approximate station 87+75. No. 55 Required the additional excavation of the unsuitable material below the bottom of the existing 48-inch sewerline and backfilling excavation with impervious fill.
 - 8-03. Stage I Embankment Analysis. Dur ng construction of the Stage I left embankment, high pore pressures (up to about 75 percent response) were

measured in the lower part of the embankment primarily in the cutoff trench, sewer trench and conduit excavation backfills. When overflowing water levels and quick recoveries after pumping were found in the protective casing of several devices, an extensive investigation was undertaken to determine the extent of the high pore pressures and the adequacy, including stability, of the embankment. The investigation involved undisturbed sampling and testing, inspection of in-place embankment material from two large diameter auger holes OH-1 and OH-2, installation of additional instrumentation to monitor pore pressures and slope movement, and dye injection and pump tests. The investigation revealed high pore pressures in excess of 50% in the lower half of the embankment. Equipment induced shear planes or other fractures or surfaces discovered during the investigation were determined to be discontinuous. It was determined that gas escaping from the open tube devices was not from anaerobic decomposition in the fill but was apparently natural gas from deposits in the foundation rock, or might possibly have originated from gas trapped in the low lying borrow deposit. The results of the gas sample analysis are provided in Enclosure 2. Slope stability studies conducted with both total and effective stress (using measured pore pressures) analyses showed an adequate safety factor for the embankment slopes. The steepest existing slope, 1V on 3H, was found to have a safety factor of 1.8 and a safety factor of greater than 2 was found for the embankment constructed to the construction halt elevation 890. It was further concluded the embankment should perform satisfactorily as a water retention structure. A more detailed description of the investigation and it's findings are provided in the "Analysis of Stage I Embankment" published in April 1983. An updated version of the write-up only is included in this report as Enclosure 1.

- 8-04. Stage II Contract. The Stage II contract, DACW41-82-C-0204, was awarded in August 1982 to the second low bidder, W.A. Ellis Construction Company for the amount of \$9,181,143.00, after the low bidder, Jack B. Anglin Company claimed an error and withdrew his bid. Construction began in August 1982 and was completed in September 1985. This contract included the spillway excavation, diversion and closure, completion of the embankment, construction of the service bridge, and the construction of the access and service roads. Because of the experiences in the Stage I contract and the concerns for the embankment stability, considerable effort was expended in revising and tightening the specifications and investigating the quantities of specific types of fill material available in the borrow. Based on these quantities and stability considerations, liquid limit requirements were established in detail for the embankment zones. A 6-month construction halt was scheduled in the Stage II contract when the embankment reached elevation 890. This construction halt elevation was originally specified in the DM as elevation 915; however, the construction halt was later changed because of the high pore pressures which developed in the left embankment, the actual timing of the 6-month construction halt and the relative fill quantities involved before and after the halt. In addition to the construction halt, fill placement rates were established which limited placement to 5 feet per 7-day period and no more than two lifts of fill in any 24-hour period.
- a. Stage II Borrow Study. During the preparation of the Stage II plans and specifications an extensive re-analysis of the Stage II borrow area was completed. Additional drilling, sampling and testing was necessary to reanalyze the borrow area to assure that sufficient quantities of the

necessary liquid limit material were available to complete the Stage II embankment. The liquid limit requirements in the embankment zones were adjusted consistent with shear strength requirements to make best use of the material available in the borrow.

į

A total of 59 additional borings were completed in the west borrow area located west of old Raytown Road and 8 borings were completed in the east borrow area located south of old Longview Road. (See Plate 3.) All borings were 6-inch drive horings with a jar sample taken every 2 feet. Liquid limit, plastic limit and moisture tests were conducted to classify the material. An additional 421 liquid limit tests were completed on samples from the west borrow and 87 were completed on samples from the east borrow. The specifications called for additional testing by the contractor and placed responsibility on him to determine proper disposition of materials.

b. Diversion and Closure. The diversion and closure plan consisted of diverting the river and constructing a cofferdam in two phases. The Phase I cofferdam was to be constructed after diversion in the upstream closure area berm and random zones to elevation 878. The Phase II cofferdam was to be constructed downstream of the Phase I cofferdam and consisted of berm, random and impervious fill including backfill of the cutoff trench to elevation 887. The diversion and closure plan including sections of the Phase I and II cofferdam are shown on Plate 19.

The cofferdam heights were established in the DM based on routing various floods through the lake with the outlet works gates completely opened. The DM recommended the Phase I cofferdam height to be elevation 867 based on the October 1949 flood (fourth highest flood) which would create a lake of elevation 862.5. However, comments from MRD resulted in the height of the Phase I cofferdam being increased to elevation 878 which would protect against the second largest flood (September 1961) or lake elevation 874.4. This change was made because of the high degree of development downstream and the potential damage which could occur if the cofferdam were to fail. The height of the Phase II cofferdam, elevation 887, was designed to protect against the record flood of July 1951 which would have resulted in a lake elevation 882.3.

The contract required that diversion of the river be made between June 15, 1983 and August 1, 1983 and the Phase II cofferdam be completed by December 15, 1983. Prior to diversion the contractor had to complete the following items:

- 1. The left embankment cofferdam to elevation 887 as originally included in Stage I.
- 2. The outlet channel, including: placing bedding and riprap, grouting riprap, constructing access walk and stairs; and the removal of the protection dike adjacent to the outlet channel.
- 3. Final approach channel excavation.
- 4. The stilling basin inspection.

Within the contract there was also a list of optional items which could be completed prior to diversion. Of this list, the contractor only completed the placement of the pervious blanket and the overlying 3 feet of the corresponding embankment zones on the right side of the river.

The contractor diverted the river and began closure operations on June 16, 1983. The diversion and closure operation was performed in the following sequence:

- 1. The protective dike downstream of the stilling basin across the outlet channel was excavated.
- 2. On June 16, construction of the upstream diversion dike began and the river was diverted through the outlet works after the approach channel plug was removed.
- 3. The remainder of the upstream diversion dike was rapidly placed to elevation 823.
- 4. A portion of the fill for service road "D" between station 23+60 and 24+70 was constructed to elevation 810 to serve as a downstream cofferdam.
- 5. Within the Phase I cofferdam area, the material from the river channel was excavated and foundation preparation was performed on the exposed bedrock surfaces.
- 6. The Phase I cofferdam was rapidly constructed of berm and random material to elevation 878. Aerial views of this phase is shown in Photos 37 and 38.
- 7. The cutoff trench in the closure area which was not completed during Stage I (between approximately stations 93+45 and 95+80) was excavated to final grade (excavation for grouting and grouting operations were performed during Stage I) and foundation preparation was performed. The foundation treatment and fill placement in the cutoff trench closure section is shown in Photo 39.
- 8. The next step was to construct the Phase II cofferdam to elevation 887 before December 15, 1983. However, since diversion was made fairly early and the Phase I closure operations had gone rather quickly, the contractor elected to bring the remaining embankment up all at once rather than just the Phase II cofferdam. This fill placement is shown in Photos 43 and 46

Shortly after diversion, heavy rains caused the Little Blue River to overtop the Phase I cofferdam which, at the time, was only a few feet above the existing ground surface adjacent to the old river channel. Some embankment material was washed away and a considerable amount of cleanup was required. The contract was modified to provide for the flood damage repair which restored the permanent work to the field conditions which existed prior to the flood damage.

Within the closure section, the pervious blanket was placed in direct contact with the foundation after the river channel was cleaned up, while the river channel downstream of embankment was backfilled with channel fill. Photo 41 shows the pervious fill placement in the old river channel and Photo 42 shows the tie-in between the adjacent pervious blanket and the pervious fill in the old river channel. The embankment toe detail within the river channel is shown on Plate 25. Downstream between station 91+00 and 93+50 an old river meander was discovered and the contract had to be modified (Modification 12) to require the removal of the debris and the low strength material. This excavation was then backfilled to the approximate adjacent ground surface with gravelly random material. The pervious blanket was then placed over the backfill rather than the foundation material.

By early November 1983, the upstream Phase II cofferdam was at the required elevation 887 while the downstream embankment averaged about elevation 880. Throughout November, adverse weather conditions prevailed and it appeared there would not be enough good working days remaining in the 1983 construction season to bring the embankment to the required construction halt elevation 890. The contractor requested the 6-month construction halt elevation be changed to elevation 880+ beginning December 1983. The Government approved the request but required the contractor do the following items prior to the construction halt: level up the embankment at station 93+00; raise the abutment contacts to provide positive drainage; level and seal the upstream cofferdam; provide erosion control for right abutment drainage ditch; and cover all pervious material with 1-foot of cover similar to the adjacent embankment material.

- c. Embankment. The six month construction halt ended on June 1, 1984. The contractor had requested an early start-up date, however this was rejected because of continued high pore pressures in the embankment. In early June, heavy rains caused a lake to form which peaked at elevation 865. Although the borrow areas were inundated and numerous gullies formed on the embankment, no major damage or abnormal seepage occurred. After the high pool, the contractor removed the 1-foot impervious cover from the pervious drain and began placing fill on the downstream side. The contractor continued placing more fill on the downstream side of the embankment until the pervious drain became the highest part of the embankment and positive drainage away from the pervious drain was established. The rate of placement for fill above elevation 867 was restricted to only 5 feet of compacted fill in a 7-day period and no more than two lifts of fill in any 24-hour period. The embankment was topped out in September 1984.
- d. Spillway. The 200-foot wide spillway located on the left abutment has a crest elevation 911.3 which is 2.3-feet above full pool and has a predicted use of once in 200 years. The left abutment location was selected in lieu of the right abutment due to the reduced amount of required excavation. The contractor began excavating the spillway after making diversion. The entire 550-foot length of spillway excavation was overburden consisting of relatively high liquid limit fat clay with a maximum depth of 14 feet and 1V on 6H side slopes. The contractor utilized the excavated overburden as road fill, berm or random fill. The spillway was over excavated 9 inches and brought back to grade with topsoil.

- e. Service Bridge. The service bridge as shown on Plates 33 and 34 was constructed when the embankment fill reached elevation 899 (bridge deck elevation). As the fill placement progressed, the embankment began moving outward causing the service bridge expansion joints to close. Photo 63 shows a closed expansion joint and the tilted rocker. Daily monitoring of the service bridge expansion joints began in early September 1984. The movement averaged about .05-inches per day until there was concrete to concrete contact at all three expansion joints. This movement began spalling the concrete at the bridge abutment expansion joint. The joints were not repaired until the Spring 1990. A separate contract was awarded to restore the expansion joints at the abutment and the pier. Plate 34A shows the service bridge after the expansion joint repair.
- f. Clay Blanket. A clay blanket was placed on the right abutment as shown on Plate 30. The clay blanket was placed between elevations 848 and 898 to control seepage thru the Bethany Falls and the Wintersal limestone. To utilize excess rock from the required excavations, rockfill was placed against the bedrock formations below elevation 848. Rockfill was also used to protect the upstream slope of the clay blanket (see Photo 47). Once the rockfill sources were depleted, the contract was modified (modification 26) to require 9-inch bedding and 18-inch riprap be placed between elevation 884 to 898 on the remaining face of the clay blanket slope. The complete right abutment clay blanket can be seen in Photo 72.
- g. Stage II Modifications. A total of 38 modifications were made to Stage II contract. Only the following 16 pertained to the construction of the embankment.
- No. 1 Required that all material in the impervious stockpile be reserved for use after closure.
- No. 8 Provided payment for the rock excavation overrun.
- No. 10 Required the repair of flood damage which occurred June 28, 1983 when heavy rains caused the Little Blue River to overtop the partially completed Phase I cofferdam, and flood the old river channel.
- No. 11 Required the construction of a concrete headwall at the west end of the grouted riprap drainage ditch adjacent to service road "C".
- No. 12

 Required the area of the embankment between station 91+00 and 93+50 (downstream of the centerline which had been excavated to remove debris and low strength material from the old slough) be backfilled with gravelly random material to approximately natural ground prior to placing the pervious blanket.
- No. 13

 Required: The open tube piezometers PPE 99-13, PPE 97-13, PPE 97-14, PPE 99-10, PPE 89-2, PPE 89-3, PPE 93-10A and inclinometers I-97-1, and I-99-2 be extended thru the embankment; PPE 93-4 be changed from a pneumatic piezometer to an open tube piezometer; the location of PPE 93-4A be

changed from station 93+00 R0+40U to station 93+00 R 2+30U; the construction of tubing ditches and the extention of tubing for 11 pneumatic piezometers; the extensions for PPE 90-1, PPE 90-2, and PPE 93-10 be deleted; and steel protective casing be installed for 9 new piezometers.

- No. 14 Changed the downstream "V" grouted gutter to a 4-foot wide flat bottom grouted toe gutter between station 87+00 and 91+00.
- No. 17 Required the borrow areas below elevation 891 be cleared completely except for the area west of Raytown Road and south of Pittenger Road; and the small area located southeast of the river immediately east of Raytown Road be cleared only to the extent necessary to obtain material.
- No. 20 Provided four lean concrete cutoff walls across the 4-foot flat bottom toe gutter on the right abutment.
- No. 22 Required: the extension of piezometers PPE 92-1, PPE 95-1, and PPE 97-16 thru the embankment and the installation of steel protective casing for each; the construction of tubing ditches and the installation of tubing for piezometers PPE 97-17, PPE 98-1, PPE 99-17, PPE 99-16.
- No. 23 Provided payment for foundation clean up overrun.
- No. 25

 Required the following changes on the instrument: ion monuments: changed concrete compression strength from 4000 psi to 5000 psi in 28 days; changed surface sealer from 2-inch thickness of black roofing cement to 1-inch thickness of Dow Corning 100% Silcon Rubber 795

 Construction Sealant; changed rebar from 2-#4 rebars and 2-#8 rebars to 6-#4 vertical rebars equally spaced and #3 rebar circumferential horizontal ties on 8-inch centers.
- No. 26 Required 9-inch bedding and 18-inch riprap be placed on the face of the impervious clay blanket above elevation 884.
- No. 29 Required the repair of flood damage that occurred in May 1983 when rains caused the Little Blue River to overflow its banks and damage the pervious zone between stations 91+00 and 93+50.
- No. 30 Provide compensation for grouted riprap overrun.
- No. 32 Deleted the requirements toe gutter to elevation 887+ on the upstream side of to dam near the left abutment and other minor changes.
- 8-05. Embankment Materials Inspection and Testing. An Excavation, Embankment, and Grouting Manual and a Field and Laboratory Testing Manual were prepared for both stages. These manuals were based on the plans and specifications and were intended as a technical guide to the Government

Inspectors and the Resident Engineer. They provided a means to better monitor the contractors work and included instructions pertaining to inspection requirements. The embankment manual also served to further explain the intent of the specification to the field inspectors. The Government inspection staff was present to witness all pertinent operation procedures and to conduct field tests. Design engineering personnel made periodic inspections, particularly during critical operations such as initial excavations, exposure of foundation surfaces, initial fill placement, diversion, and instrumentation installation.

- a. Field Control Tests. Field control tests were performed to monitor mointure content, gradation, compacted density, and classification of fill material to ensure the specification requirements were satisfied. These tests were performed by the Government after the fill was compacted. The contractor was responsible for all sampling and testing to assure that materials met specified requirements prior to compaction. Monthly summaries of the field control tests were sent through Construction Division to Engineering Division and reported to MRD. Tests were performed on all material types.
- (1) Impervious, Random and Berm. The field control testing for the impervious, random and berm zones consisted primarily of liquid limit and field compaction determinations. The sand cone method was used for determining the compacted density. The maximum density and optimum water c. stent were determined in accordance with EM 1110-2-1906, Appendix VI, Standard Compaction Tests. A family of compaction curves was developed for each material source. Subsequent field tests then relied on a one-point compaction test to determine which compaction curve was appropriate. Although no fill density was specified, it was required that the fill be compacted to a minimum of 95 percent of that obtained from the standard effort compaction test. Experience had indicated that the specified moisture content and number or roller passes would achieve these densities. If the desired compaction was not achieved additional rolling was required. Due to the previously discussed problems with liquid limits on this project, liquid limits were performed on all field control samples to check compliance of the material in the various zones. If Government tests showed noncompliance with the specifications it was the contractor's responsibility to do additional testing to define limits of the "out of spec" area and to remove and replace it. The area was then rechecked by the Government.
- (2) Pervious. The pervious field control testing consisted of a combination of gradation testing and in place relative density determinations. The relative density value represents a density ratio defined as the extent compaction has progressed from the loosest state toward the densest state. The minimum density was determined by placing the material dry in its loosest practical state. The maximum density was then found by vibrating the sample at a given frequency for a set time period. The detailed procedure was presented in EM 1110-2-1906 (10 May 1965).
- b. Record Control Tests. Record control samples were obtained periodically from the impervious, random and berm zones. They served the purpose of checking the physical properties of the materials actually used in the dam against those properties assumed for design. Schedules of the record control sample locations and testing are shown on Plates 50 and 51 respectively. Most of the record control samples consisted of one sack and

one hand triumed undisturbed sample 6-inches in diameter by 6-inches long (Photo 12). These samples were sent to the Missouri River Division laboratories for testing. This testing included compaction, Atterberg limits, gradations including hydrometer, moisture content, density, and shear strength determinations. Summaries of these test results are provided on Plates 52 through 85. While the actual test results are provided on half-size plates as Supplement A. The inspection staff performed standard field control tests at each record control test location. The duplication of testing by the Division laboratory and the field laboratory served to check the accuracy of the field results. A comparison between laboratories can be made by reviewing the compaction test summaries presented on Plates 79 through 85. There were some substantial variations between the laboratories in-place moisture content, compacted density, optimum moisture content and maximum dry density values. The majority of these variations are probably due to minor material changes and slightly different laboratory procedures or equipment. There is, however, a very interesting consistent variation between the laboratories' optimum moisture content results. As shown on Plates 80 and 84, the field laboratory's optimum moisture content was consistently higher than the Division laboratory's results. All of the embankment material was placed within the specified compaction requirements based on the field laboratory's standard Proctor compaction test results (95 percent maximum dry density at a moisture content between 2 percent below and 3 percent above optimum). According to the graphs on Plates 82 and 85, 26 percent of the Stage I field tests and 20 percent of the Stage II field test were outside the specified moisture range based on the field laboratory's standard Proctor test results. All of this material was supposedly removed or reworked to meet the specifications. However, these plates also show that 54 percent of the Stage I record control tests and 14 percent of the Stage II record control tests were outside the required moisture range based on the Missouri River Division laboratory's standard Proctor test results. The Division laboratory results are believed to be accurate and indicate some of the embankment material may have been placed 3 to 6 percent above optimum moisture which could have contributed to the high embankment pore pressure that developed during construction.

CHAPTER 9

OPERATIONAL NOTES

9-01. Embankment.

- a. Upstream Slope. During initial filling some erosion and undercutting of the riprap occurred on the 1 on 4 slope of the conduit section. Overall, the 18-inch riprap has held up relatively well with only some minor breakdown along the waterline at multipurpose pool elevation. During the high pool in October 1986 as shown in Photo 70, the water was near the top of the lower riprap (elevation 898). Wave action displaced the riprap leaving the bedding exposed between stations 89+00 and 92+00. In August 1989, this 300 foot section was repaired with the same Bethany Falls limestone that was used for the emergency rock stockpiles. During the May 1990 record pool (elevation 897.2) no damage was caused to the lower riprap or grassed slopes because the pool rose and fell rapidly.
- b. Crest. The crest road remains in good condition except for some longitudinal cracking along the downstream shoulder caused by lack of lateral support along the pavement edge. Shortly after construction, the upstream edge of the road near the right abutment grouted gutter ravelled back past the guard rail. In 1989, the edge of the road had to be repaired to prevent any undermining of the grouted gutter. After completion of the embankment, a low area in the dike on the left abutment at approximately station 104+00 was noted. This low area was approximately elevation 925.2, 1.4 feet below the design elevation of 926.6. During the spring 1990, this low area was filled and brought up to the design elevation.
- c. Downstream Slope. Since completion of the embankment, the grass cover has become established with only a few sparse areas remaining (Photo 74). There are several areas along the upper interceptor ditch which do not drain properly, causing overtopping of the ditch and the formations of erosion gullies. The lower interceptor ditch at the entrance to the left abutment grouted gutter is too low causing water to pond in the interceptor ditch. This area and a few other areas along both the upper and lower interceptor ditches have been filled to provide proper drainage. Shortly after construction, erosion control fabric was installed in the toe ditch as shown in Photo 60. Since then some silting of the ditch has occurred due to runoff from the embankment and Foreman Road. After initial filling, the sand blanket between station 91+00 and 95+50 began to seep more than initially expected. This is believed to be caused by abutment seepage. See the paragraph below. During construction, the bedding covering the sand blanket was contaminated with fines washing down the slope prior to establishing grass cover. The contractor only removed and replaced the upper 6-inches of bedding material. In 1987, drains (6-inch perforated pipe) were installed through the bedding in order to reduce the head of water exiting the sand blanket. This drain installation can be seen in Photos 65 and 66. Although all drains flow, this had no effect on the piezometer level in the sand blanket. Flow from the drains and excess seepage have caused a maintenance problem in this area. The installation of a french drain between the sand blanket and the toe ditch has been recommended to monitor the seepage and alleviate the maintenance problem.

- d. Abutments. Since initial filling high piezometric levels have existed in the right abutment bedrock upstream and downstream of the grout curtain. The pressurized zones appeared to be limited to the Pleasanton Zone A. B. and Middle Creek limestone/Hushpuckney shale. The seepage is probably making its way through the grout curtain, however, with the Pleasanton Zones A and B in direct contact with the upstream rockfill zone, the seepage could also be coming around the end of the grout curtain. The seepage in any case is being intercepted by the sand blanket which extends up the abutment slope. It appears the sand blanket is adequately controlling the seepage and no other problems have developed due to those high pressures. (See previous discussion in Chapter 7.) Since completion of the dam, numerous seeps from the Winterset limestone along the right abutment have caused wet areas on the impervious clay blanket. Although this is not a dam safety concern it became a maintenance problem. In 1987, a french drain was installed to dry up the area (Photo 67). However, the french drain did not extend into the draw far enough and does not intercept all of the drainage. Therefore, some wet areas in the impervious blanket still exist. The downstream right abutment grouted gutter has held up well since end of construction because it was constructed with concrete cutoff walls every 50 feet. These cutoff walls were added as a modification during construction which widen the gutter to intercept a natural draw coming down the right abutment. The downstream left abutment grouted gutter was not constructed with cutoff walls and consequently began undermining. In September 1989, concrete head walls were constructed on the left and right abutment grouted gutter where the interceptor ditches flow into the grouted gutters. Also, concrete cutoff walls were installed about every 75 feet along the left abutment grouted gutter to prevent the undermining.
- 9-02. Emergency Rock Stockpile. The construction of two emergency rock stockpiles were completed in March 1990, on both abutments. Photo 75 shows the completed left abutment emergency rock stockpile. The stockpiles consist of 8,084 tons of Type "A" rock 1,826 tons on the left abutment and 6,259 tons on the right abutment, and 3,231 tones of Type "B" rock, 747 tons on the left abutment and 2,484 tons on the right abutment. Rock for the stockpiles was produced from the 16-foot ledge of Bethany Falls limestone in Carefree Quarries on the northeast corner of the intersection of Highway 291 and Kentucky Road in Sugar Creek, Missouri. Listed below is the specified rock gradations:

Type "A" (Riprap)

	Specified Percent
Weight	of Weight Lighter Than
760#	100
570#	75-95
190#	30-50
55#	0-2
Тур	e "B" (Bedding)
Sieve	Specified Percent
Size	By Weight Passing
6"	100
4"	82-95
2"	62-83
1"	32-64
3/8"	0-20

ENCLOSURES

ENCLOSURE 1

LONGVIEW DAM ANALYSIS OF STAGE I EMBANKMENT

TABLE OF CONTENTS

	Abstract	Page
I.	Introduction	i
II.	Embankment Pore Pressure, End-of-Construction	1
III.	Field Geotechnical Investigation	6
IV.	Laboratory Testing	10
٧.	Analysis of Instrumentation Data A. Embankment Pore Pressure Measurements B. Inclinometers	11 11 13
VI.	Stability Analysis	13
VII.	Conclusions and Recommendations	14
	TABLES	
Table N	o. Description	
1.	Listing of Instrumentation	2

I. Introduction

- 1. The purpose of this report is to present the results of a geotechnical investigation of the Longview Stage I embankment. At the completion of embankment construction, high pore pressures were known to exist in the lower part of the embankment. However, when overflowing water levels and quick recoveries following pumping were found in the protective casing of several devices an investigation was undertaken to determine the extent of the high pore pressures and the adequacy, including stability, of the embankment.
- 2. Longview Dam is constructed on the Little Blue River in southeast Kansas City, Missouri. The dam, an earthfill zoned embankment, was built in two stages. The Stage I contract, completed in the fall of 1982 (see Photos 32 and 33), consisted of foundation excavation and preparation including grouting; construction of the intake tower, conduit, relocated sewer, and stilling basin; excavation of the outlet channel; and placement of a portion of the embankment on both sides of the river. Stage II includes diversion and closure, and completion of the embankment.
- 3. The Stage I contract began in late summer of 1979 with the outlet works excavation. The right embankment and cutoff trench were completed during the 1980 construction season. By fall of 1980 the outlet works conduit was completed which enabled placement of impervious backfill upstream of centerline. In the spring of 1981, the outlet works backfill downstream of centerline began. Sewer diversion through the conduit took place in July and was followed by excavation and removal of the old sewer line and backfill of the excavation. Heavy rainfall throughout the spring and summer delayed work, but the fill had been raised above the induit, El. 822+, by the end of August. By mid-November the downstream embankment was topped out to El. 867 and the upstream cofferdam to El. 870. The finished height of the Stage I cofferdam was reduced from El. 887 because of a shortage of impervious borrow for the Stage I contract.

II. Embankment Pore Pressures, End-of-Construction

- 4. During the Stage I construction period, 19 pore pressure devices were installed in the left embankment and foundation area (see table 1). Five of these, PPE97-1, PPE97-6, PPE99-2, PPE99-5, and PPE99-6, whose tips were located in the embankment clay showed pore pressure responses of 78, 68, 53, 13, and 56 percent, respectively, following the embankment construction in October 1981. PPE99-5 is located near the inclined sand drain which probably accounts for its lower response. It was concluded at the time (fall of 1981) that even though the responses were 50 percent and above, the tips were located within the backfill of the excavations and these pressures did not extend into the upper part of the embankment where they might contribute to slope instability. Pore pressures in the overburden and foundation shale were low or nonexistent, with one exception. PPF99-4 showed about 50 percent response. Its tip was located deep in the foundation shale and did not influence stability.
- 5. In January 1982, ice was observed at the top of the protective casing around PPE99-2. This was concluded to be either communication between the riser and the protective casing (since at that time the water level in the riser was higher than in the protective casing) or that water could have

TABLE 1 LISTING OF INSTRUMENTATION

				•	Groundwater at M. 810.8 (2)		ê Y			E	(3)	.9° of relimeter is hole over- algets water added to fill rises	to top May bole; water maded to fill riser to top
		dry hale (1)	dry kale (1)	•	Commenter	47 Pole (3)	to vatur noted (3) dry bale (1)			No water noted (1)	no water motaed (3) dry bole (3)	.9' of reline	to top May bole; water riser to top
Ground	T.Seedox	# 010	870 £	ž	4 ·	4 ·	539 A			4 60 1	33 t	9.6%	89.7
Ground Elevation at		\$29.2	8. TS	3	C 80	25 E	625.2	4 6	, X		82. ±	9.69	1.638
Dotton of Proteotive		ı	i	801.5	617.7	16.9	1	0.15	i	0.00	831.5	9.9%	67.9
Zone of Sand		819.6-622.2	819.6-622.6	794.5-197.5	810.2-813.3	784.8-788.0	805.2-809.0	817.4-820.4	789.5-792.5	803.4.808.0	821.5-827.6	53.4-855.6	839.5-042.2
Tip Elexation	·	820.2	9.028	794.8	810.5	785.0	807.0	817.8	789.9	805.0		653.6	839.9
finterial Dra		Debanksent- Sever Back(1)1	Behniusent Sever Backfill/ Fdn Overtunden	Fdn Shale	Fdn Gravel	Fdn Shale	Embankment- Cutoff Trench	Fdn Overburd	Fdn Shel	Fdn Gravel	Debandment-Imp./ Sand Drain	Babaniaent. Jeperatous	Emborament. Impervious
Installation Date		3 Sep 81	3 Sep 81	A 3ep 81	25 Feb 80	2 Sep 81	3 Sep 81	25 Feb 80	24 Sep 81	2 Oct 80	22 Sep 81	23 Oct 82	30 Oct 82
Troe		Proventio	Preventio	Open Jube	Open Tube	Open Tube	Proceedia	Open Tube	Incumetto	Open Tube	Open Jube	Open Tube	Open Tube
POR		325 to	210. (15	200. 032	8 33	9	15 43	5. S	100.	120' 051	160° DS	200° US	.8
Station	chargo.	91+00	97+00	97+00	97+90	7+00	97+00	97+00	00-16	27+00	77+00	97+00	97+00
Manhor Station Benge	Left. Paradoment	1-1624.	PPF97-2	FP97-3	P2591-4	PPF97-5	8-163H-6	FPF-91-8	PRF 97-9	72797-10	11-26-11	FPE97-12	PPE97-13

TABLE 1 (Cont'd)

	dry hole; vater added to fill riser to top	dry hole; added 12 gml. of water	oted (1)	dry hole; 5 gs. water added	ot~d (3)	water encountered at mend blanket Kl. 811.9 & (2)	no water moted (1) located mear inclined sand drain	(1) peru	oted (2)	9' of vater in hole after 35 min.; veter added to fill riser to top	~	.1' water overnight (8)
a constant	dry bole; verified to top	dry bole; of water	no water moted (1)	dry bolle;	no water noted (3)	water enco	no weter a	no water moted (1)	no water noted (2)	9° of vate 35 mln.; vi riser to t	dry hole (4)	mater
Ground Devesion Present	1.699	7.699	872	£ 198	¥ 199	£ 196	₩ ±	¥ 196	866.5	0.790	647.2	666.9
Cround Elevation at Installation	7:692	669.7	625.7	£4.3	624.7	653.9	623.5	. 828 826.5	866.5	967.0	867.2	866.9
Bottom of Protective Casing	1.120	1	i	8:6:8	1.96.1	6.111	1	ı	816.5	863.8	865.2	863.5
Zone of Swrd Backfill	629.2-832.0	821.9-812.7	799.5-802.5	811.3-814.3	189.4-192.7	770.8-773.9	817.5-820.6	622.0-624.0	806.5-811.0	823.0-634.2	623.3-832.2	822.9-832.9
Tip Elsyation	1.629	825.4	600.0	612.0	1.69.7	772.8	518.0	822.5	810.3	623.8	823.k	823.0
Paterial	Enbanksent- Lapery fous	Subaniament- Inpervious	Fdn Shale	Extendment- Inpervious	Fdn Shale	Fdn Shale	Embandment- Impervious	Embandment- Impervious	Fdn Overburden/ Fdn Shale	Pabarkment- Impervious	Embanionent- Impervious	Pebankment Impervious
Installation Date	1 Nov 82	6 Nov 82	19 Aug 81	18 Aug 81	20 Aug 81	21 Aug 81	21 Aug 81	18 Aug 81	11 Jan 62	21 Oct 62	3 Nov 82	5 Nov 82
Tree	Open Tube	2* 0.T.	Precentio	Open Tube	Open Tube	Open Tube	Precentto	Preventio	Open Tube	Open Tube	Open Jube	Open Tube
Boss	195° US	205.	220.022	. US	MO 108	\$0 . D\$	60° DS	226' US	70' 115	sn ,00	8	150 152
Station Bose	77 +30	97.00	98-51	11796	98+112	98+38	56+37	99+12	04-96	98-45	00+66	00+66
lbeter	PHS7-14	PPE97-15	1-66-44	PPE99-2	PR-99-3	F1F99-1	PPE99-5	PPE39-6	1-66.843	8-66344 E-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	PPE39-9	PPE99-10
										Enc i	1	

IABLE 1 (Cont'd)

	Station Banks 98-44 65° US 98-40 280° US 98-35 6. 99-45 400° US 99-45 400° US	2° 0.T. Open Tube Open Tube Open Tube Open Tube Open Tube Open Tube	12 Nov 62 17 Nov 62 18 Nov 62 17 Nov 62 19 Nov 62 19 Nov 62 19 Apr 71 16 Apr 71	Paterial Type Babankment- Impervious Babankment- Impervious Babankment- Impervious Babankment- Impervious Fah/Overburden Fan Shale Fan Overburden Fan Overburden Top of Fan Lisestons	T1p R21.2 821.2 838.6 823.2 823.2 815.7 815.7	Zone of Sand Back(1111 620.5-839.2 838.6-849.0 823.1-833.1 823.1-833.1 823.1-832.9 813.9-825.7 804.6-808.6 812.6-816.6	Bottom of Protective Casing 664.0 664.0 864.0 866.7 809.6 817.6	Ground, Elevation at Installation at 667.2 667.2 667.0 669.7 669.7 889.6 882.6 882.6	07-cand Elevation Present 667.2 667.0 667.0 667.0 667.0 667.0 667.0 667.0 667.0 667.0 667.0 662.4 662.4	water in hole but depth not noted (2) 4' of water 30 minutes after drilling (4) trace of water 35 minutes after drilling (4) dry hole (4) dry hole (4) for Huar in hole 30 Min. after drilling (2 no water noted (4) no water noted (4)
98+00	143 US	₽* 0.T.	24 Nov 82	Embandment- Impervious	625.0	825.0-864.0	i	670.0	870.0	38" sugar hole backfilled with compacted sand
98+12	U)	. 0.T.	6 Dec 82	Emberiosent- Impervious	820.0	820.0-861.8	1	967.0	0.738	38" euger hale beautilled with compacted send

out'd)
9
TABLE

					`						
				Instal lation	Haterial	ŢĬp		Bottom of Protective	Ground Elevation at	Ground	
Mucher	Ruther Station	Paner	Type	Data	Dypa	Elevation	Backfill	Casing	Installation	Present	
Ment President	enkeent				p						
77 22 3	91+60	90 ms	Open Tube	16 Dec 75	Fdn Gravel/ Fdn Shale	805.5	804.5-811.5	812.5	820.0	848 ±	groundwater at El. 810.2 (2)
PPEB9-1	05+60	199' US	Open Tube	20 New 82	Pabankwent- Random	835.1	834.8-838.8	0.488	886.8	896.8	dry hole (3)
PPE89-2	\$ 1+6	199' US	Open Jube	20 Nov 82	Exbankment— Bern	862.2	862.0-866.1	4. 466	886.8	8.66.8	dry hole (3)
PPF89-3	89+55	1991 US	Open Tube	1 Dec 82	Fdn Overburden	814.3	813.3-818.1	963.4	867.3	867.3	dry bole (3)
Inclinameters	tera										
1 97-1	97.48	189° US	Incilnometer 11 Nov	er 11 Nov 82	Fdn Shale	797.B	Top of bedrock - 807.8	- 607.8	₹018	₹019	water encountered at E1. 827
1-99-1	98+96	36' BS	Inclinometer 15 Jan	er 15 Jan 82	Fdn Shale	796.5	Top of bedrock - 500.0	- 800.0	£ 199	₹ 298	dry hole
1-99-2	98+25	95° US	3 Inclinameter 20 Nov	er 20 Nov 82	Fdn Shale	197.8	Top of bedrock - 809.6	- 809.6	 \$ 198	₩ 199	water encountered at El. 835.5

Irgend

Encl 1 Page 5 of 14 entered the casing by a number of external sources such as rainfall, or by someone inadvertently or deliberately pouring water down the casing.

- 6. To determine the source of this water and to obtain additional undisturbed record control samples, PPF99-7, an open tube device, was installed in early January 1982 in the foundation overburden/foundation shale contact 10 feet downstream from PPE99-2. By the end of the month, water had filled the casing of PPF99-7. On this basis, it was concluded the water was coming from unknown external sources and not from the fill itself. Communication between the riser and the casing was not likely since the water level in the riser was 45 feet lower than in the casing. In addition, water had not been observed in the casings on other KCD projects unless the riser had overflowed. It was believed that the casing with slip joint couplings supplied with "0" rings would be watertight. In addition, it was not believed possible that pore water in an impervious fill could accumulate that fast in the casing when the usual experience is that a large amount of water must be added to open tube devices to bring them to equilibrium.
- 7. By fall of 1982 the devices began showing varying degrees of dissipation of pore pressure. However, in September 1982 in preparation for winter, the water levels in the casings of PPE99-2 and PPF99-7 were lowered as much as 10 feet to prevent freezing, but one week later the water had recharged to its original level in PPE99-2 and had recharged halfway in PPE99-7. In addition gas bubbles were being released from the casing water of PPE99-2. There was no known external source of water. It appeared that the protective casings and the rises were acting as separate measuring devices. The protective casings were apparently registering higher pore pressures at points higher in the embankment, possibly near the mid-height. These pressure levels apparently exceeded 50 percent response.
- 8. An extensive investigation was undertaken to determine: 1) the extent and magnitude of pore pressure levels in the embankment, and 2) the source of apparently excess water in the impervious zone of the embankment.

III. Field Geotechnical Investigation

9. Starting on 25 October 1982, twelve open tube pore pressure devices were installed at various locations and depths in the left embankment between station 97+00 and station 101+00 to determine if a zone of high pore pressure did exist near the mid-height of the fill and if it did, to define its limits. All instrumentation holes were continuously sampled with a 5-inch Hvorsley Shelby tube sampler. Since it was suspected that use of drilling fluid may have caused hydraulic fracturing of the fill at PPF99-7, all succeeding holes were cleaned after each push with a 6-inch box auger and no drilling fluid was used. Some squeezing of the hole occurred after the holes had been advanced to about 30 feet. (This was also about the same depth water was encountered in several of the holes.) In taking the undisturbed sample the driller lowered the Hvorsley sampler usually until a slight seating resistance was encountered (normally .2 to .3 feet above the clean-out depth). This allowed space for any material reamed from the hole sides by the sampler. Inspection of the samples (some were sliced thin and air dried) did reveal a few cases of disturbance at the top of the sample which may have been caused by seating or heaving of the hole. Generally the quality of the undisturbed samples was excellent.

- 10. Drilling started with hole PPE99-8, located about 11 feet from PPF99-7. Free water was encountered while it was being drilled. Thirty-five minutes after drilling was completed, the hole had 9 feet of water in it. There was concern the fill was cracked or had been hydraulically fractured from the earlest us of drilling fluid in hole PPF99-7.
- 11. To investigate the lateral extent of these fractured zones dye was added to piezometers PPES9-8 and to subsequently drilled PPE97-13 on 3, 4, and 5 November. Drilling began on PPE99-11 located 5 feet from PPE99-8 on 7 November 1982. Free water was encountered in drilling this hole, however no dye was found, either in the water or in the undisturbed samples. When the water was bailed to the bottom of the hole, water levels in adjacent devices PPE99-8 and PPE99-2 were affected. The casing water level in PPE99-2 (about 6 feet from PPE99-11) dropped 3.1 feet and the riser water level in PPE99-8 dropped 8 feet. PPE97-15, located 5-1/2 feet from PPE97-13, was drilled on 6 November. No free water or dye was encountered. No trace of dye was found in any of the undisturbed samples.
- 12. In addition, after adding water to the top of the riser in PPE99-8 shortly after installation, the water was observed surging up and flowing out the riser. This phenomenon was not understood at the time, however it was speculated this could have been sudden movement (shearing) of the fill or could possibly be associated with the escape of gas from the riser since the fluid was very "bubbly." Gas bubbles were observed escaping from several of the devices. There was also speculation the fill might contain a shear zone or cracks from differential settlement over the conduit and the adjacent alluvium, but it was still considered more likely that this area of the fill had been hydraulically fractured. There was also concern that the gas was an indication of organic material in the fill.
- 13. The undisturbed samples from all holes were closely examined to determine if shear surfaces, cracks, free water, or organic material could be found. The samples usually had a tendency to break on both smooth horizontal planes (see Photo 27) and on more irregular surfaces which had a raindrop-type texture (see Photo 28), as if they had been wet at one time However, no free water was found, except from one sample from hole PPE99-14, El. 835.3, where a slight indication of free water was found, and from one sample from PPE97-13, E1. 839.3, which appeared even wetter. More samples were examined from other holes and these planes were found in most samples examined except to perhaps a lesser extent in those from near the ground surface. Some of the planes could be lift surfaces, however close spacing and orientation precluded others from weing lift planes. Most of the planes did not give any indication that free water had traveled over their surfaces. The planes often seemed to be coated with silt or appeared to be a silt parting. No organic material was found in any of the samples. A high angle fracture was found in sample 8 from PPE97-14, depth 40.0' to 40.5' El. 829.2-829.7. This fracture did not extend to any Adjacent holes and may have been caused by drilling and sampling procedures.
- 14. Two inclinometers in addition to I-99-1 (previously installed in January c? 1982 on the downstream slope) were installed to determine if any significant slope movement was taking place on the temporary 1V on 3K and 1V on 3.5K slopes parallel to the river. To date, these devices have not shown any indication of significant movement.

- showing water levels either close to the top of the riser or began overflowing. In several installations (PPE99-9, PPE99-10, PPE99-11, PPE99-13, PPE99-14, and PPE99-15) the tip was installed dry. No water was added to bring the device to equilibrium. Yet, the water level in the riser rose typically 1 to 2 feet per way. PPE99-13 rose at a rate of about 9 feet per day. As noted previously, this is contrary to behavior observed previously at KCD projects. Those which overflowed, PPE97-14 PPE^9-9, PPE99-10, and PPE99-13, were equipped with pressure gauges and air eliminator valves. The pressure began approaching and in some cases exceeded previously monitored pore pressures in the lower portion of the embankment. However, the air eliminator valves were later found not to be effective in completely removing gas from the devices. It was later concluded the readings were higher than the actual pore pressures since gas partially displaced the water in the riser.
- 16. The right embankment area was originally instrumented with only one piezometer located in the foundation gravels. When these higher pore pressures were found on the left embankment, three pore pressure devices were installed in November 1982. Their tips were located in the foundation overburden, the random fill zone, and the berm fill zone. The berm shows no evidence of pore pressure. Pore pressure response in the random zone was 30 percent, while the response in the foundation was 25 percent.
- 17. In order to be sure the embankment was suitable and in fact stable, it was considered prudent to auger two large diameter (38-inch) holes to allow detailed inspection of the fill (see Photo 26). The locations were selected at station 98+00, range 143 u/s and at centerline near the edge of the intersection of the 1V on 3H and 1V on 3.5H slopes. This was considered the most likely location for differential settlement cracks or or a shear zone associated with slope instability to appear. Holes OH-1 and OH-2 (see Plate 49) were drilled in ten foot increments to depths of 45 and 47 feet, El. 825 and El. 820 respectively. Temporary casing was installed to allow personnel to safely enter for inspection and sampling (both iars and hydraulically jacked 5-feet diameter undisturbed samples were taken).
- 18. In OK-1, water seeps were observed at 22 feet, E1. 848 (see Photos 29 and 30); 24 feet, E1. 846; and 34 feet, E1. 836 (see Photo 31). Gas bubbles were observed forming on some of the wet surfaces. At a depth of 32 feet the air in the auger hole contained 10 percent combustible gas according to measurements from a portable gas "sniffer." Although the quantity of water coming from the seeps was not large erough to collect, after about a week the sidewalls had become wet below the seep areas. Concentric cracking also had developed and these cracks had free water on the surfaces.
- 19. The second hole, OH-2, was drilled on the centerline to determine if any fracturing extended through the central impervious core of the dam. Water was encountered only at 23 feet, El. 844. A thin, very silty lean clay zone was encountered at 37.3 feet, El. 829.7. The rest of the embankment material seem to be well placed and well compacted with only the usual material color changes taking place along with minor variations in stiffnes3. The planes or fractures were not as evident as they had been in the undisturbed Shelby tube samples. It appeared some planes on the side wall and in the cuttings (similar to oncs previously observed) were in fact caused by mechanical

shearing from the augar. It is considered likely that many of planes observed in the undisturbed samples were caused by mechanical shearing from construction equipment (e.g. scraper pan, motor patrol blade, or pumping action from heavily loaded scraper tires), or could be related in some way to the drilling and sampling procedures. Similar planes were observed at Blue Springs Dam following stripping operations performed with scrapers. These planes were of limited extent (equipment width) and tended to dip only slightly from horizontal and in the direction of equipment movement. They appeared to have been caused by shearing action of the scraper pan. Their length was relatively short, generally 5 feet or less.

- 20. Gas samples were collected from the open tube devices after the observation of gas in the instrumentation risers and casing and after combustible gas was detected in the auger hole. Initial attempts were made with a small neoprene balloon. A local commercial lab analyzed the gas as a "50 percent methane/50 percent mixture. (See Enclosure 2.) Since no organic material other than undecomposed small roots was found in any drill hole the source of the methane was unexplained. The flammability of the gas in all the open tubes which had pressure gauges was checked by holding the air release valve open. In all cases where a quantity of gas had built up, the gas could be ignited (see Photo 34). Taking care to avoid dilution or contamination, two additional gas samples were taken in stainless steel "bombs" and analyzed by the Environmental Lab at the Waterways Experiment Station. These were taken from PPE99-9 and PPE99-10. Both have tips located in the impervious embankment, but PPE99-10 is isolated by the sand blanket from other suspected sources of gas such as the abutment, the foundation, and the relocated sewer. It is also isolated fro the impervious core and upstream fill by the inclined sand drain.
- 21. Results of the WES tests on samples from both locations show the content of methane (percentage by volume) varies from 65 to 70 percent and that of carbon dioxide varies from 16 to 20 percent. An aerobic decomposition of organic material normally results in a lower methane content and a much higher carbon dioxide content than was found in the samples. The gas analysis showed that the fill was not producing methane as a result of decomposition of organic material. The results of the gas tests are provided as Enclosure 2. Analysis of water samples from the devices showed no indication of treated water or sewage. The results from the water analysis are provided in Enclosure 3. It was initially hypothesized that the gas was present in the suil voids in the low lying borrow deposit, either as a result of underlying gas fields or overflow of sewerage. It is difficult to believe the gas could escape from the foundation or the sewer, pass through the pervious zone and into the impervious fi'l, considering the high pore pressures present in the latter as opposed to no excess pressures in the former. However, if enough capillary tension existed in the sand fill it may be possible for the gas to pass through the pervious zone.
- 22. In addition to dye injection, pump tests were conducted at two of the installations (PPE97-15 and PPE99-11) which were installed with 2-inch diameter PVC risers and a 15-foot section of 2-inch slotted well screen. Each were located adjacent to piezometers to provide monitoring of drawdown. Initial rump testing drew the water level down only 12 feet, the drawdown being limited by the pump suction. This had no discernible effect on adjacent devices. Subsequent "pump testing" was actually done by bailing rather than

pumping in order to draw the water surface down farther. Pumping PPE97-15 affected the water level only in PPE97-13 (5.5 feet away). It did not affect PPE97-12 (7 feet away), and PPE97-14 at (8 feet away). Pum ing PPE99-11 immediately affected the water level in PPE99-8 (5.0 feet away) and the casing water level of PPE99-2 (6.5 feet away). Casing and tip water levels in PPE99-7 (approximately 17 feet away) were not affected. This data and data from the dye injection indicate some fractures or cracks do exist over at least limited areas and may be capable of transmitting water only short distances, say less than about 10 feet.

23. Coefficients of permeability were determined. Using the results of dye injection, field falling head permeability tests conducted in conjunction with the dye injection, and recharge data from pump tests. Dye injection showed a seepage velocity of .0019 cm/sec or a k of 10⁻³ cm/sec. Falling head permeability data yield a k on the order of about 10⁻⁵ to 10⁻⁶; recharge data shows a range from about 10⁻⁴ to 10⁻⁶. These permeability values are also consistent with the rather rapid rise of the water level in several of the installations at station 99+00. It is difficult to believe this quantity of water could flow at this rate (about .5 gallons per day) from a compacted "impervious" ill. It can only be theorized that the presence of fractures or cracks increase the area of the drainage boundary. This allows faster collection of water produced from consolidation or pore pressure dissipation in the area surrounding the borings. Since the induced construction pore pressures obviously have only dissipated slightly these numbers can be indicative of only localized areas

IV. Laboratory Testing

- 24. The laboratory investigation consisted of classification testing of both jar and undisturbed samples; and strength and permeability testing of undisturbed samples. Jar samples were obtained both during the installation of instrumentation and from the side walls of the two large diameter auger holes. Undisturbed samples along with sack samples were obtained for record control testing during construction. Additional undisturbed samples were obtained from push samples taken both during the installation of instrumentation and from the side walls of the two large diameter auger holes. Testing was also done on a sack sample taken from a small seep area located on the 1V on 3.5H slope of the left embankment.
- 25. Water content, Atterberg limits, and/or mechanical analysis tests were performed on representative jar samples. Specifications for the left embankment between station 97+00 and station 101+00 required a liquid limit of less than 55 and a moisture content between 2 percent below and 3 percent above the standard Proctor optimum moisture content. Very few of the liquid limit results exceeded the liquid limit requirement. A review of the field compaction data compiled as the embankment was constructed indicates a mean moisture content of 1.2 percent abc/e optimum with a standard deviation of + 1.4 percent. (See also paragraph 8-04.b. for discussion of moisture content vs optimum water content.)
- 26. Testing of undisturbed samples consisted of unconsolidated-undrained triaxial compression "Q" tests; consolidated-undrained (with pore pressure measurement during shear) triaxial compression \bar{R} tests, drained direct shear "S" tests, and constant head permeability tests. The record control samples

taken during construction had "Q", "R" and direct shear "S" tests run on each sample. At the time of this report there had been a total 14 "Q", 20 "R", 15 "R" and 16 direct shear "S" tests performed on material from the left embankment. The results of the "Q" tests confirm the design strength of c = .9 tsf (see Plate 54). The effective stress "R" or "S" strength envelope developed from record control and recent testing indicated strength parameters of c = .15 tsf and tan 9 = .49. This compares with the design strength envelope of c = 0.0, tan 9 = .50 shown on Plate 54.

- 27. Three horizontal constant head permeability tests were performed on samples from OH-2 with the first sample being oriented with existing planes. The two other tests were run on a silty lean clay material encountered deeper in hole. The permeability of the first sample was 1.9 \times 10⁻⁷ cm/sec while the permeability of the two samples in the silty material was 2.2 \times 10⁻⁸ and 2.6 \times 10⁻⁸ cm/sec.
- 28. Moisture density tests were run on a sack sample obtained from a seep area on the 1V on 3.5H slope at station 97+35, range 60' u/s, E1. 848. Triaxial "Q" and " \bar{R} " testing was done on samples remolded with a water content of 3 percent above optimum. Results from the " \bar{Q} " test were slightly below design strength. Effective stress data from the " \bar{R} " testing indicated a strength above the design envelope.

V. Analysis of Instrumentation Data

A. Embankment Pore Pressure Measurements

- 29. The pore pressure in the devices installed in the embankment during construction peaked shortly after the cessation of Stage I fill placement in November 1981 and dissipated slowly until resumption of construction. Pressure in PPE97-1, installed in the old sewer-excavation backfill, peaked at a level of almost 28 feet above the top of the embankment, El. 898, and dissipated 10 feet. Pressure in PPE99-6, installed near the foundation, upstream of centerline and left of the conduit, rose to 6 feet above the fill and dissipated 3 feet. The water level in PPE99-2, the only open tube with its tip installed in the fill, peaked at a level of 3 feet above the fill and dissipated 16 feet.
- 30. The twelve additional open tube pore pressure devices, installed in the left embankment area since October 1982 were all in the embankment impervious zone. Two devices (PPE97-12, PPE99-12) installed in the upper 20-30 feet of the fill showed no pore pressure. PPE97-13 (tip at about 30 feet) showed about 30 percent response.
- 31. Three pore pressure devices stabilized with their water level within about 10 feet or less below the top of the embankment. They include PPE99-8, PPE99-11, PPE97-15. These devices had tips at elevations of about 821 to 832. The remaining six devices (PPE97-14, PPE99-9, PPE99-10, PPE99-13, PPE99-14, and PPE99-15) had pore pressures in excess of 50 percent. All had tips in a zone from about E1. 823 to 833. All were equipped with pressure gauges and air eliminator valves. Although these valves have been used successfully in the past on other KCD projects to remove gas from piezometers they have not worked well here. As long as the gas accumulated slowly and at relatively low pressures, the air eliminator system worked. However, when gas accumulated

rapidly and at higher pressures the valve did not release the gas and allowed it to build up and cause an abnormally high gauge reading making the magnitude of the pore pressure impossible to determine. When the gauges were removed a mixture of both water and gas bubbles would overflow the riser. Some of these bubbles were from gas coming out of solution as the pressure was reduced. However the earlier described phenomenon with the piezometer surging, then overflowing had occurred prior to the installation of a gauge. It is believed possible that gas was somehow trapped in the riser and had to develop a certain volume or pressure before it would rise to the top. Evidently a larger diameter riser (e.g. PPE99-11 and PPE97-15) allows gas that collects in the riser to escape more easily with less effect on the water column. It appears, therefore, that the column of water in the riser was not all water but a mixture of water and highly concentrated trapped gas bubbles.

- 32. This was further evidenced when gauges were initially removed from PPE99-9, PPE99-10, and PPE97-14, and a collector was fabricated to catch any overflow from the risers. The collector allowed the monitoring of both the amount of overflow and the fluctuation of the water level in the riser. The devices do not overflow at a constant rate over any given period of time. As an example, PPE99-10 overflowed 38 ounces between 14 February and 17 February. By 18 February it had overflowed an additional 18 ounces. On 1 March, the collector contained 99 ounces after just 4 days but the water level in the riser had fallen to a depth of 29 feet. The next day, 2 March, the water level had come up 10 feet to a depth of 19 feet. By 3 March it had come up an additional 5.5 feet and was rising at a rate 1/4-foot per hour. It was rechecked on 11 March and found that it had overflowed and was frozen. Fluctuations of the water level in the other riser are not as extreme, but all devices have shown fluctuations up to 2 feet within a few minutes.
- 33. The water level in the casings of PPE99-2, PPF99-7, PPF99-3, and PPF99-4 are also acting as separate devices. All water levels are slightly above the top of the embankment. Both PPF99-3 and PPF99-4 casings have consistently bubbled with escaping gas.
- 34. Based on the above data it is believed the pore pressure response in this zone between El. 820+ to 830+ is probably on the order of 50 to 60 percent.

B. Inclinometers

ţ

35. Three inclinometers have been installed in the left embankment. I-99-1, installed in January 1982, is located on the downstream IV on 4H slope adjacent to the river closure section. The maximum movement indicated has been to 1/10-inch downstream and 4/10-inch riverward. Movement is toward the river where the embankment slope is IV on 3.5H. I-99-2 and I-97-1 were installed in November 1982 near the riverward slope of the embankment, upstream of centerline. I-99-2, on the IV on 3.5H slope, has indicated a maximum movement of approximately 1/10-inch in the downstream direction and essentially no movement toward the river. I-97-1 has indicated a maximum movement of approximately 1/10-inch both in the downstream direction and the riverward direction.

VI. Slope Stability

- 36. Stability studies were made for the end-of-construction condition using both total stress and effective stress methods. The computer program used was STABR developed by the University of California at Berkeley which uses Bishop's modified method of analysis and a circular failure surface. The program contains a searching routine which varies both the center of the circle and the radius of the circle until the minimum safety factor is found. Critical minimum slides were checked by a hand analysis to verify the computer safety factor. Pore pressure contours developed from measured induced construction pore pressures were used for the effective stress analysis. The shear strength for the soil was determined from record control testing and from testing on undisturbed samples taken during the field investigations. The total stress analysis used "Q" strength and the effective stress analysis used drained "S" and undrained "R" strength with pore pressure measurements.
- 37. Two slope configurations have been studied on the left embankment:
 (1) the IV on 3H slope along the closure area with the embankment at El. 871 which is the existing condition, and (2) the upstream IV on 4H slope in the conduit section with the embankment completed to the construction halt, El. 890. Pore pressures used for this latter case were based on measured pore pressures and the assumption that the additional embankment load would cause a pore pressure response of 50 percent. A 50 percent response is reasonable based on previous KCD experience where pore pressure has been allowed to dissipate after a construction halt. Generally the additional response should be less after some dissipation (consolidation) has occurred.
- 38. Initial studies begun in December 1982 (with construction induced pore pressures reflecting the highest pressure gauge readings) showed a minimum safety factor of 1.47 for the temporary IV on 3H slope. Both a total stress and an effective stress analysis was conducted for the IV on 4H upstream slope constructed to El. 890. The minimum safety factor for the effective stress analysis was 1.23 while the minimum safety factor for the same slide for a total stress analysis resulted in a safety factor of 2.1. Later it was concluded the high pore pressures indicated by the pressure gauges were not valid because of the influence of gas and further analyses were conducted with the pore pressure contours believed to be more representative of actual conditions. Minimum safety factors for the IV on 3H slope were found to be 1.8 and for the IV on 4H upstream slope were found to be 2.3 (compared with the total stress safety factor of 2.1).

VII. Conclusions and Recommendations

- 39. Conclusions from the investigation are as follows:
- a. Induced construction pore pressures in the left embankment ranged up to about 75 percent in a zone within backfilled excavations, El. 810+. Above this area, El. 820+ to 830+, pore pressure responses were about 50 to 60 percent. No pore pressures are present in the top 20+ feet of the fill. Pore pressures induced in the foundation overburden and shale are generally low or nonexistent.
- b. Shear planes or other fractures or surfaces do not affect the integrity of the embankment. These fractures or planes apparently are a major

factor in the relatively fast response in some of the open tube devices and in the protective casings. However, all evidence, (dye tests, pump tests, the very existence of high pore pressure in the fill, and the conclusion that the fractures or planes were mechanically induced by construction equipment or in some cases by drilling and sampling procedures) suggests these planes, while numerous, are of limited extent and are not continuous.

- c. The gas sampled from the fill is not coming from decaying organic material in the fill, or from the sewer in the conduit structure. The exact source of the gas is unknown but may have been present in the soil as it came from the low lying borrow deposit or may be coming from the foundation. The presence of the gas makes it very difficult to determine the magnitude of the pore pressure with open tube devices.
- d. Inclinometers installed at the most critical locations indicate no significant movement of any of the slopes.
- e. Stability analyses show an adequate safety factor (1.8) for the steepest existing slope and current pore pressure conditions. An adequate safety factor (2.1 to 2.3) was also found for the embankment constructed to the construction halt elevation.
- f. In summary the embankment is found to be stable and is expected to perform satisfactorily as a water retention structure.
- 40. As a result of the investigation the following recommendations were made:
- a. Given the relatively high construction pore pressures close monitoring of pore pressure and slope movement (inclinometers) should continue as the Stage II embankment is constructed. In addition because of the presence of fractures, continued close monitoring will be necessary during initial reservoir filling.
- b. To facilitate ease of construction (i.e. to reduce the number or risers brought up with fill) and to resolve problems with the effect of gas on measured pore pressures, small diameter pneumatic air cells should be installed at the tips of the 3/4-inch open tube risers.
 - c. Stability should be reanalyzed at the time of the construction halt.

ENCLOSURE 2 LANGSTON LABORATORIES, INC.

Laboratory Report

Date Received: December 8, 1982 Time Received: 10:30 am

Submitted by: U.S. Army Corps.of Engineers

700 Federal Building Kansas City, NO 64110

Date Completed: December 15, 1982

Attn: Mr. Robert Dirmitt

LLI Project No.: 82-9415

Sample Description: Balloon

Sample

Identification

Analysis

Results

Gas in Balloon

Methane

approximately 50%

Air

approximately 50%

Commencs:

Ap, roved:

Alan Kerschen Laboratory Director

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS P. O. BOX 631 VICKSBURG, MISSISSIPPI 39160

CKSBURG, MISSISSIPPI 3916 18 January 1983

REPLY TO
ATTENTION OF:
Environmental Laboratory

Mr. Robert Dimmitt
USCE, Kansas City District
Room 816
700 Federal Building
601 E. 12th Street
Kansas City, MO 64106

Dear Mr. Dimmitt:

The analysis of the gas samples taken at wells 99-9 and 99-10 are enclosed (enclosure). The analytical results shown are averages of duplicate gas chromatographic runs.

The ratio of gases in the samples is not what has normally been observed in gas mixture formed by anaerobic decomposition of organic matter. Most decomposition gases would have less methane and greater proportion of carbon dioxide. This suggests gas is not forming in the fill material itself. If there are any questions regarding the analyses please contact Richard A. Shafer at FTS 542-3943.

Sincerely,

Philip G. Malone, Ph.D.

Geologist

Water Supply & Waste

Treatment Group

RESULTS OF GAS ANALYSES FROM PIEZOMETERS AT LONGVIEW DAM

% By Volume

Sample	Oxygen	Nitrogen	Methane ·	Carbon Dioxide
99-9-1	0.24	13.4	69.3	16.5
99-9-2	0.20	13.0	66.5	19.5
99-10-1	1.46	17.0	65.0	16.0
99-10-2	6.04	32.0	51.0	10.0

APPENDIX

Gas Sample Collection

Pertinant Data:

PPE 99-9

Station 99+00

Range 50' US

Bottom of Hole El. .823'

Zone of sand backfill at tip 8.9'

Installation Date: 3 November 1982

No water encountered during drilling.

No water added after backfill.

PPE 99-10

Station 99÷00

Range 1+50' DS

Bottom of Hole El. 823'

Zone of sand backfill at tip 10'

Installation Date: 5 November 1982

No water encountered during drilling.

Sand backfill saturated with 4.0 gallons of water (initial water level convert to El. 831.3)

A water trap device was assemblied to aid in obtaining gas samples. The unit used two pressure gages, one on the line leading from the piezometer riser into the water trap and the other attached to the water trap chamber. Four valves are used to regulate flow through the device. One valve was located between the riser and the water chamber, one between the water trap chamber and the sampling tube, and two located at the bottom and top of chamber to aid in the filling and de-airing of the chamber. The chamber was filled with water to minimize the amount of air that would have to be chased out of the system to obtain a pure sample.

The procedure used to obtain gas samples is as follows:

- 1. If the pierometer has been winterized, remove as much diesel as possible.
- 2. Fill riser to the top with water.
- 3. Fill water trap with water removing as much trapped air as possible.
- 4. Attach metal connect to open tube riser using teflon tape or other sealer.
- 5. With all valves closed attach water trap to riser.

ENCLOSURE 3 DEPARTMENT OF THE ARMY

MISSOURI RIVER DIVISION, CORPS OF ENGINEERS DIVISION LABORATORY

13 JAN 1983

OMAHA, NEBRASKA 68102 subject: Tests of Water Intended Use:____ Source of Material: Longuew P2 97-3 Submitted by:____ Date Sampled:____ Date Received: __ Hethod of Test or Specification: APHA Standard Methods References:____ : Test Result 1 Tests Run COD PH 7.8 28 Suspended Solids 324 Dissolved Solids Alkalinity to Phenolphthalein as CaCO3 198 Alkalinity to Methyl Orange as Ca (03 242 Bicarbonate (HCO3) Carbonate (CO3) Total Hardness as CaCO3 Calcium (Ca) 30 Magnesium (Ma) 19 Carbonate Hardness as CaCO3 198 Non-carbonate Hardness as Ca CO3 Sullate (504) 55 Chloride (CO) 13 . Nitrate (NO3) 0.02 Sodum (Na) 55 Potassium (K) 3 1.936 Iron (fe) disolved .024 pan Manganese (Mr mag 0 Silica 13 0.13. (NH3) ammona Remarks O All values shown except pH are expressed as parts per million

DEPARTMENT OF THE ARMY MISSGURI RIVER DIVISION, CORPS OF ENGINEERS

13 JAN 1983

DIVISION LABORATORY OMAHA, NEBRASKA 68102

subject: Tests of Water	
Subject: 18372 05 10047-1	
Project:	
intended lise:	
Source of Haterial: Rouguinn P299-2	
Submitted by:	•
Nate Sampled:	4 me
Herhod of lest of Specification: Arma Storagia Pyle	-21,000
References:	
	Result [®]
	79
COD	
PH Suspended Solids	275
Dissolved Solids	1170
Alkolinity to Phenolphthalein as CaCO3	0
Alkalinity to Methul Orange as Calos	785
Bicarbonate (HCO3)	956
Cartonate (CO3)	0
Total Hardness as CaCO3	. 1025.
Calcium (Ca)	314
Magnesium (Mg)	58
Carbonate Hardness as CaCO3	785
Non-carbonate Hundness as Callos.	240
Sullate (504)	3
Chloride (Cl)	18
Nitrate (NO3)	0.00
Sodium (Na)	24
Potassium (K)	7
	~40} 43,02
Manganese (Mn)) 0.649 ppm) 10.6
Silica	. 18
ammonia (NH3)	1.06
Remarks	
O All values shown except PH are expressed as carts	per man and
(2) see 60ct	

MRO FORM 115 EDITION OF FEB 67 IS DESOLETE.
Encl 3
Page 2 of 5

83/27

DEPARTMENT OF THE ARMY MISSOURI RIVER DIVISION, CORPS OF ENGINEERS

13 JAN 1983

DIVISION LABORATORY OMAHA, NEBRASKA 68102

subject: Tests of Water	
Project:	
Source of Material: Longwiew P2 99-4	
309100 07 1180011811	
Submitted by:	
Date Sampled:	Methods
The state of the s	
References:	
Tests Run : T	est Result [®]
COD	77
PH	8.1
Suspended solids	93
Dissolved Solids	680
Alkalinity to Phenolphthalein as Cal D3	0
Alkalinity to Methyl Orange as Ca(03	486
Bicarbonate (HCO3)	593
Carbonate (CO3)	
Total Hardness as CaCO3	286
Calcium (Ca)	83
Magnesium (Mg)	19
Carbonate Hardness as CaCO3	486
Non-carbonate Handness as Callo3	0
Sulfate (SO4)	53
Chloride (Cl)	26
Nitrate (NO3)	0.00
Sodum (Na)	107
Potassium (K)	16
Iron (Fe) denotued 0.171 ppm	total3 129.
Manganese (Mn)) 1233ppm	3.0
Silica	· 22_
ammoma (NIts)	0.00
Remarks	
O All values shown except pH are expressed as pa	irts per million

DEPARTMENT OF THE ARMY MISSOURI RIVER DIVISION, CORPS OF ENGINEERS

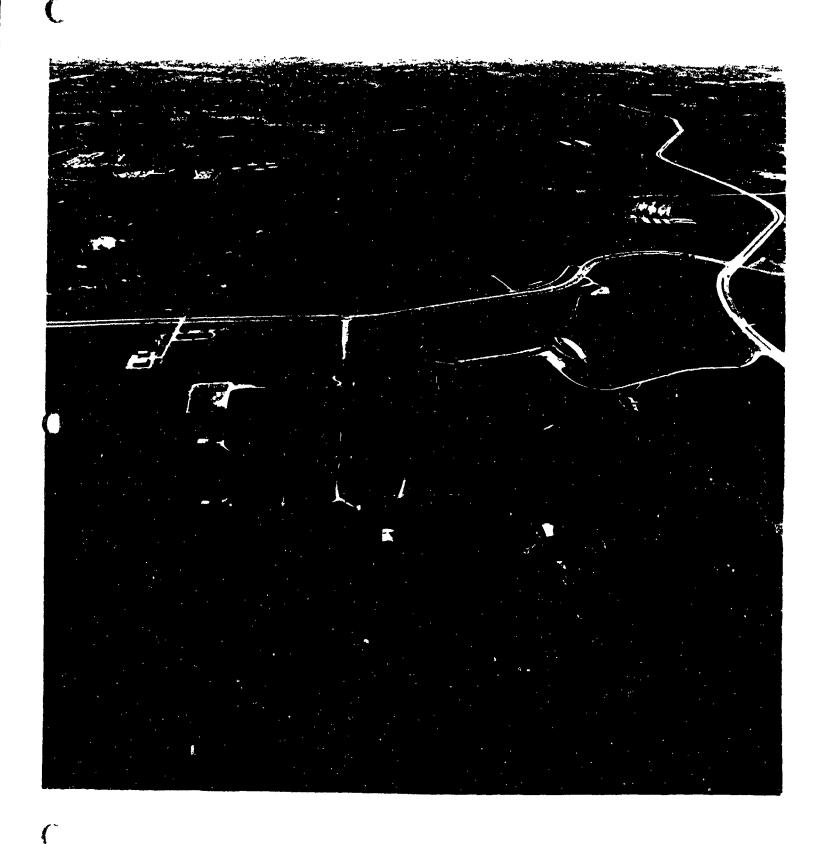
13 JAN 1983

DIVISION LABORATORY OMAHA, MEBRASKA 68102

subject: Tesis of Water	
Project:	
Source of Material: hongwew P2 - 99-3	
Submitted by:	
Date Sampled:	thods
References:	
Tests Run . Test	Result [®]
COD	63
РН .	7.3
Suspended Solids.	155
Dissolved Solids	632
filtalinity to Phenolphthalein as CaCO3	0
Alkalinity to Methyl Orange as Ca (03	550
Bicarbonate (HCO3)	671
Carbonate (CO3)	
Total Hardness as CaCO3	. 516
Calcium (Ca)	158
Magnesium (Ma)	30
Carbonate Hardness as CaCO3	550
Non-carbonate Handness as CICO3	0
Sullate (504)	26
Chloride (Cl)	16
Nitrate (NO3)	0,00
Sodium (Na)	19
Potassium (K)	4
Iron (Fe) 3 dissolved 0.073 pm	Lotal 3 57.36
Manganese (Mn)) 9.51 ppm	12.0
Silica	. 14
annonia (NH3)	0.20
Remarks	
1 All values shown except pH are expressed as parts	per million
	•

MAD FORM 115 EDITION OF FES 67 IS OSSOLETE. Encl 3 Page 4 of 5

DEPARTMENT OF THE ARMY HISSOURI RIVER DIVISION, CORPS OF ENGINEERS


DIVISION LABORATORY OMANA, NEBRASKA 68102

13 JAN 1983

Subject: Tests of Water	
Project:	
Intended Use: Source of Material: Brong wew P2-99-7	
Source of Haterial:	
Submitted by:	
Date Sampled: Date Received:	
Hethod of Test or Specification: APHA Standard Me-	<u> 40035 </u>
References:	
Tests Run Test	Result [®]
COD	68
PH .	7.8
Suspended Solids :	33
Dissolved Solids	1010
Alkalinity to Phenolphthalein as CaCO3	0
Alkalinity to Methy! Orange as Ca(03	872
Bicarbonata (HCO3)	1064
Carbonate (CO3)	0
Total Hardness as CaCO3	477
Calcium (Ca)	137
Magnesium (Mg)	33
Carbonate Hardness as CaCO3	872.
Non-carbonate Handness as CaCO3	0
Sullate (504)	75
Chloride (Cl)	50.
Nitrate (NO3)	0.00
Sodium (Na)	200
Potassium (K)	11
Iron (Fe) ? dispolved 0.805 pm	bles 0.8
Manganese (Mn) 5.80 pm	5.8
Silica	28
ammona (NHB)	0.96
Remarks	
O All values shown except pH are expressed as parts	per million
ms smood	

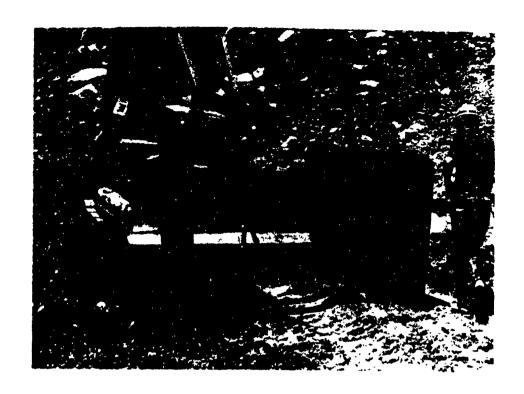
PHOTOGRAPHS

PHOTOGRAPHS

1. March 1990. Overview of completed embankment from downstream of right abutment.

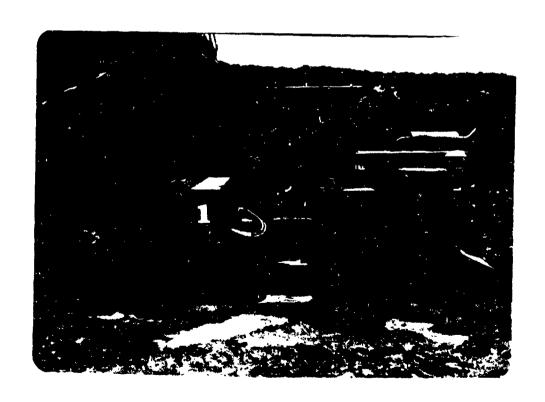
2. 1983. Two Caterpillar D-9s loading Cat 631 scrapers in upstream valley borrow area.

3. 09 October 1981. Cat 5310 scraper.

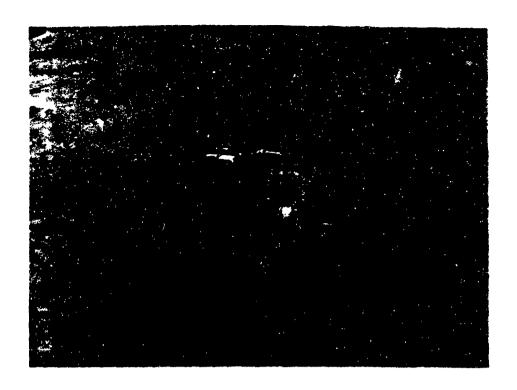

(

4. 26 July 1983. Cat D-9H compacting haul road ramp with tandem sheepsfort roller Looking toward downstream right abutment.

5. 10 July 1983. Compacting impervious fill around sump in cutoff trench with a "BARCO" gas powered compactor.

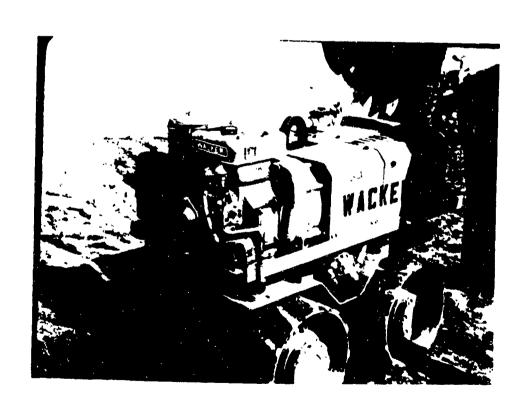


されたとうないのできませんないできませんないから マイン・アンド

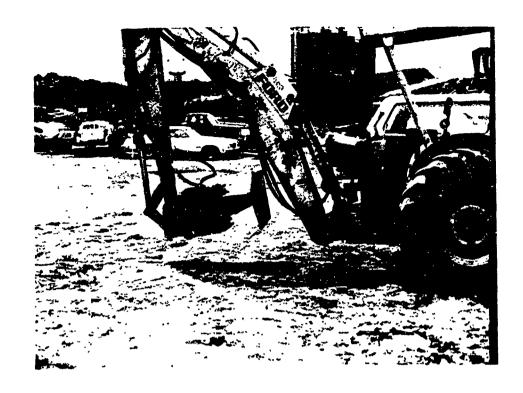

6. 06 July 1983. Spreader box mounted on a Cat D3 used for placing the 6 foot wide pervious drain.

(

C



7. June 1980. Raygo "Rascal" 410-A 5 ton vibratory roller used to compact pervious fill. Looking downstream in cutoff trench.



8. 07 June 1983. "Wacker" DVU4001 small vibratory plate compactor used to compact pervious fill in restricted areas.

(

9. 07 May 1981. Small 4 wheel "Wacker" vibratory roller. Attempts were made to use this roller to compact pervious around conduit. Roller buried itself frequently and could not be used.

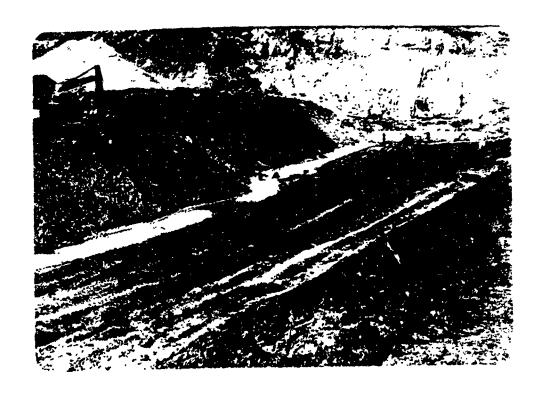
10. 11 June 1981. Backhoe mounted vibratory plate used to compact pervious fill along the right side of the conduit.



11. 18 September 1981. Wheel rolling upstream cutoff trench contact with left abutment Sni-A-Bar Limestone with Cat 920 front end loader.

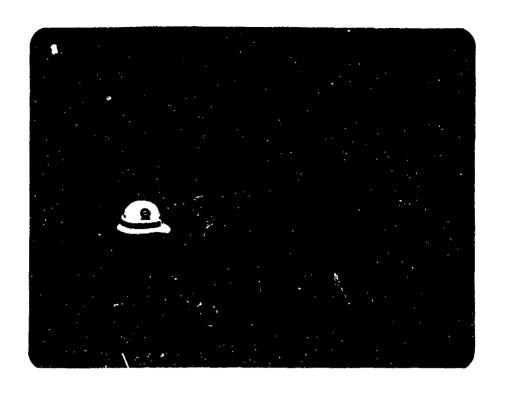
12. 18 July 1983. Record control sample being taken.

STAGE I EMBANKMENT CONSTRUCTION

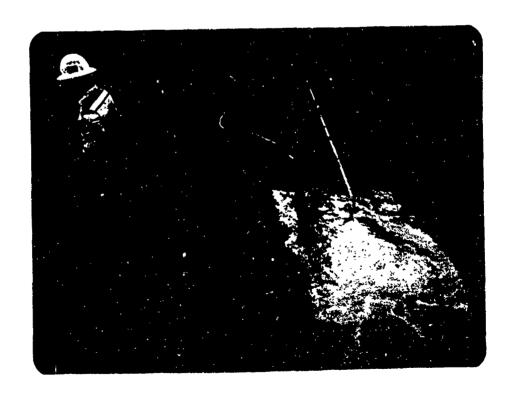

13. 05 March 1980. Looking west at slide on left side of outlet works excavation. Slide occurred on 18 November 1979 between approximate outlet works stations 55+00 and 57+30. Estimated volume approximately 39000 cubic yards.

14. 29 May 1980. Curtain grouting in cutoff trench. Looking toward downstream left abutment.

15. July 1980. Removal of unacceptably wet impervious fill material and excavation for placement of pervious on the downstream side of the cutoff trench. Looking toward left abutment from right abutment.



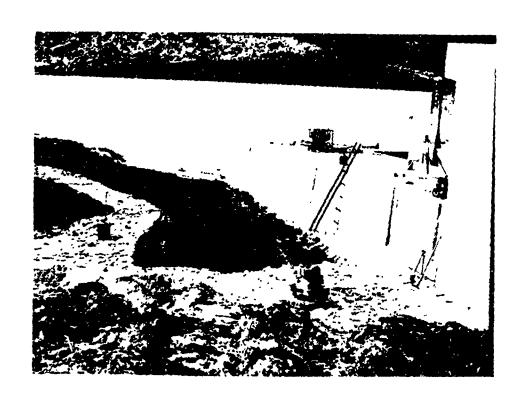
16. July 1980. Impervious and pervious fill placed in cutoff trench against right abutment. Looking toward right abutment.


Į

17. 21 July 1980. Outlet works ogee section and 45 degree bend of twin sewer conduits. Looking downstream.

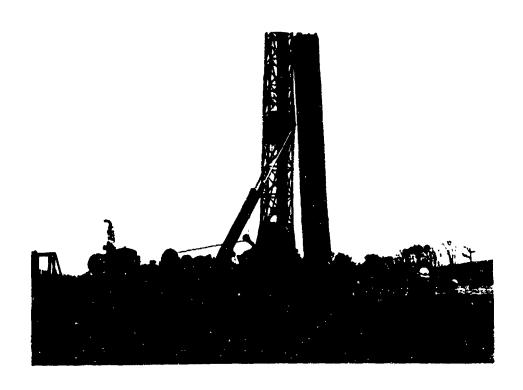
18. 14 August 1980. Stair stepped surface of heavily fractured Middle Creek limestone of right abutment after excavation and cleaning. Looking downstream.

19. 14 August 1980. Placement of dental concrete and slush grout to seal the surface of Middle Creek limestone of the right abutment. Looking downstream.

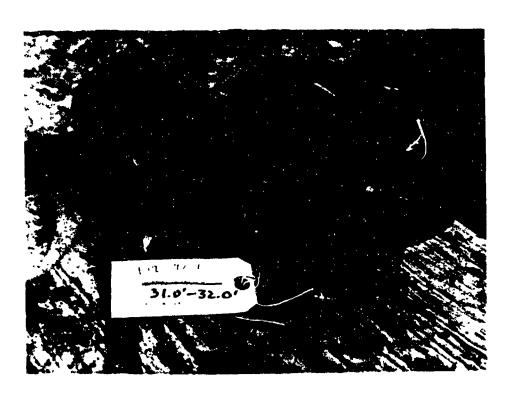

20. 21 October 1980. Overview of fill placement, conduit construction, and left abutment cutoff trench from right abutment.

21. 06 May 1981. Selective loading with rock rake of left abutment Sni-A-Bar limestone to make rockfill.

22. 21 May 1981. Overview of conduit backfill, fill placement, and right abutment from left abutment.

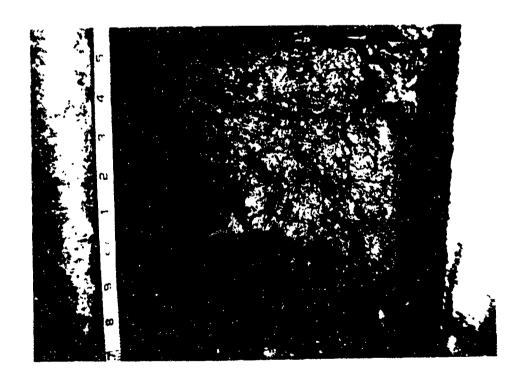

23. 21 July 1981. First lift of impervious fill being placed over pervious on upstream side of bend in twin sewer conduits at approximate outlet works station 54+00. Looking toward left abutment.

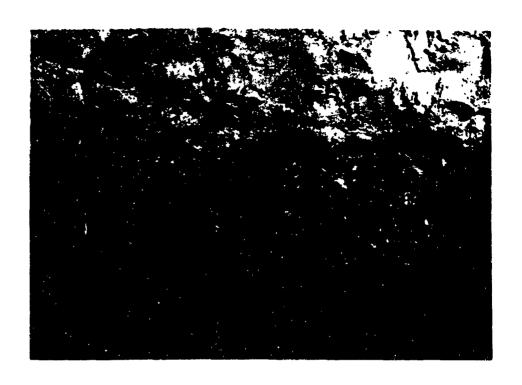
24. 18 September 1982. Left abutment and cutoff trench.



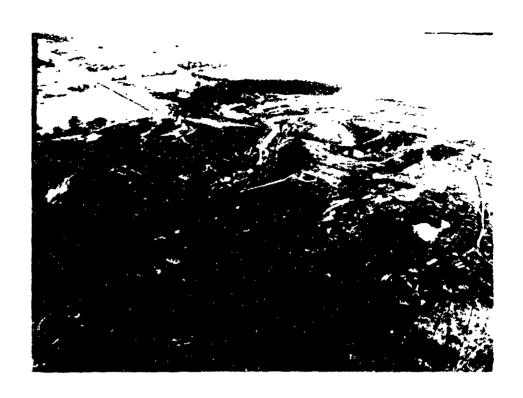
25. 21 October 1982. Downstream impervious stockpile. Looking downstream of right abutment.

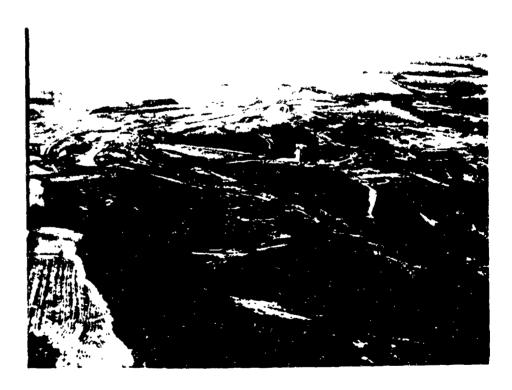
ţ


26. 16 November 1982. Stage I embankment investigation. Lowering inspection casing into 30 inch diameter observation hole (OH). Looking toward downstream right abutment.


27. November 1982. Sample showing typical smooth surface texture, probably caused by pumping action of loaded scraper; PPE-97-15, Depth 31-32 feet; Elevation 837.7 to 838.7.


28. November 1982. Sample showing typical raindrop-type texture, probably mechanically induced from construction equipment; PPE-97-15; Depth 29.0 to 30.8 feet; Elevation 838.9 to 840.7.

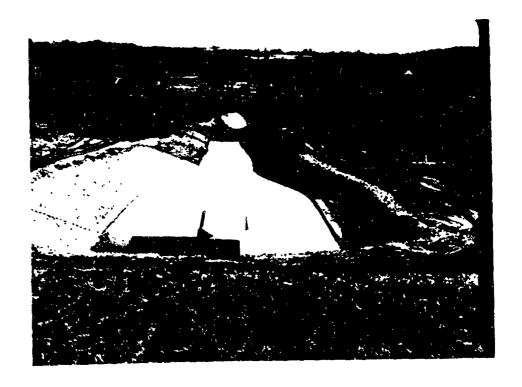

29. November 1982. First wet area encountered in OH-1; Depth 23 feet; Elevation 847.

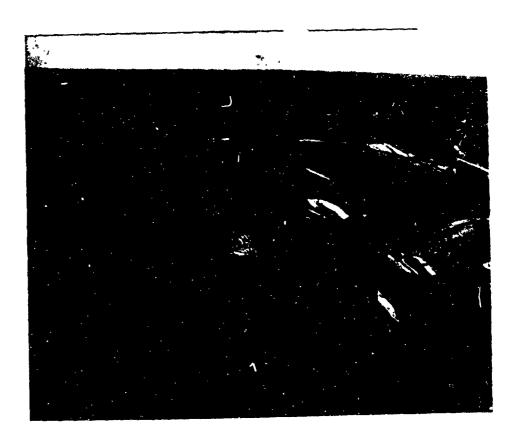

30. November 1982. One foot above area in previous photo; exposed boundary layer with the upper material moist and seepage exiting from lower material; OH-1; Depth 22 feet; Elevation 848.

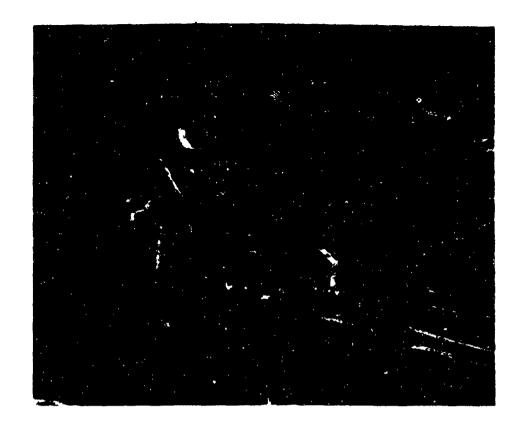
31. November 1982. Wet area encountered in OH-1; Depth 34 feet; Elevation 836.

32. 24 November 1982. End of Stage I construction. Aerial view of construction from downstream of left abutment looking southeast.

33. 24 November 1982. End of Stage I construction. Aerial view of construction from downstream of right abutment looking southwest.


STAGE II EMBANKMENT CONSTRUCTION


34. January 1983. Ignition of gas from PPE99-9.


35. 10 June 1983. Impervious planket against upstream right abutment.

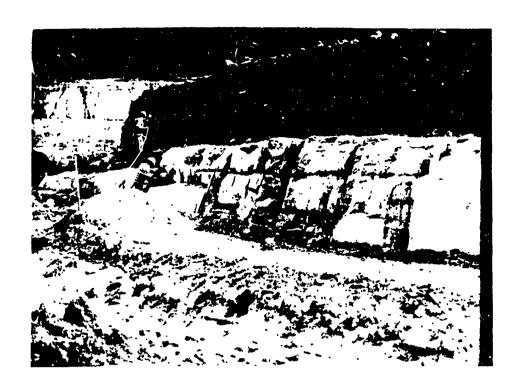
36. 17 June 1983. Completed outlet works and stilling basin. Looking downstream.

37. 06 July 1983. Aerial view of embankment, cofferdam, and closure section construction from downstream of right abutment.

38. 06 July 1983. Aerial view of embankment and closure section construction from upstream left abutment.

39. 09 July 1983. Cleanup of cutoff trench and impervious placement in closure section.

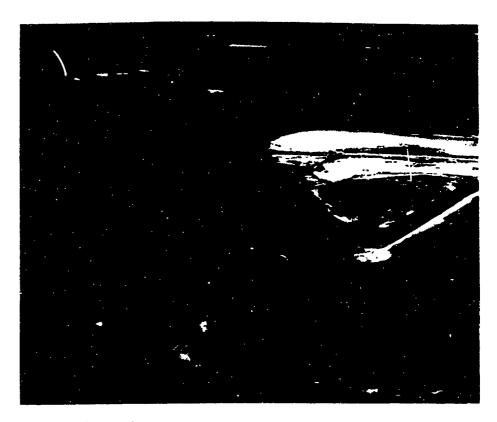
40. 12 July 1983. Pervious placed at downstream edge of cutoff trench in closure section. Looking toward right embankment.

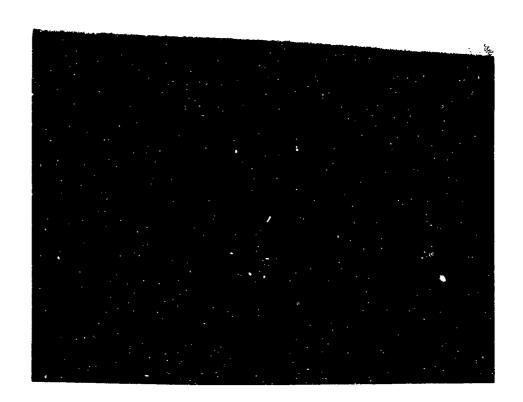

41. 18 July 1983. View of closure section showing pervious placement at downstream side of cutoff trench and in old river and diversion channels. Looking downstream.

42. 22 July 1983. Pervious blanket placed over old river channel in closure section. Looking downstream.

43. September 1983. Closure section embankment construction. Looking toward downstream right abutment from left abutment.

44. 13 September 1983. Downstream right abutment.


45. 13 September 1983. Upstream right abutment.


46. 26 October 1983. Fill placement in closure section. Looking toward right abutment.

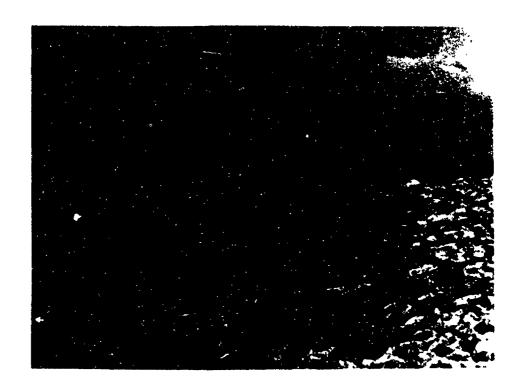
47. 24 May 1984. Rockfill in clay blanket area on upstream right abutment. Locking upstream.

48. May 1984. Aerial view of embankment after completion of closure section fill placement. From above left abutment looking toward right abutment.

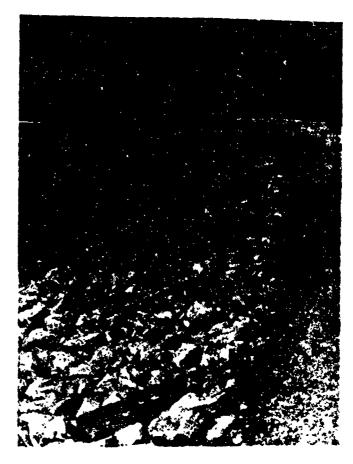
49. May 1984. Aerial view of embankment looking upstream from downstream of the right abutment. The east borrow is visible in the center of the photo and the west borrow is at the upper right center.

50. May 1984. Aerial view of borrow areas from south of the west borrow area looking north toward the east borrow area and the embankment.

51. 16 July 1984. Upstream and downstream random zone fill placement. Looking toward right abutment.


52. 18 September 1984. Upstream slope before final grading. Looking toward upstream left abutment.

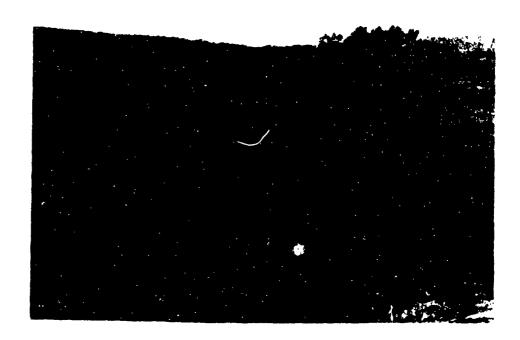
53. 26 November 1984. Downstream left abutment grouted gutter construction. Looking upstream.


54. 25 March 1985. Front end loaders placing riprap on upstream face of embankment. Looking downstream.

55. 26 March 1985. Dressing of riprap adjacent to bridge abutment using large backhoe.


56. 26 March 1985. Completed upstream slope protection. Looking toward upstream right abutment.

57. 23 May 1985. Completed slppe protection at crest of embankment. Looking toward left abutment.


58. September 1985. Completed upstream slope from tower bridge. Looking toward upstream right abutment.

59. September 1985. Completed, downstream right abutment from stilling basin parking lot.

60. 24 September 1985. Eight foot flat bottom toe ditch. Looking toward stilling basin.

61. 24 September 1985. "Enka-mat" erosion control fabric lined ditch above grouted gutter on downstream left abutment.

62. 05 March 1986. Downstream right abutment contact showing cleared sewer line alignment at upper left.

63. 22 April 1986. Closed expansion joint and tilted rocker due to movement of tower bridge abutment.

64. April 1986. Crown crack and leakage along left wall at monolith joint between tower and conduit.

65. 19 May 1986. Installation of finger drains into pervious blanket at embankment toe.


66. 19 May 1986. Compl ted finger drain installation at embankment toe..

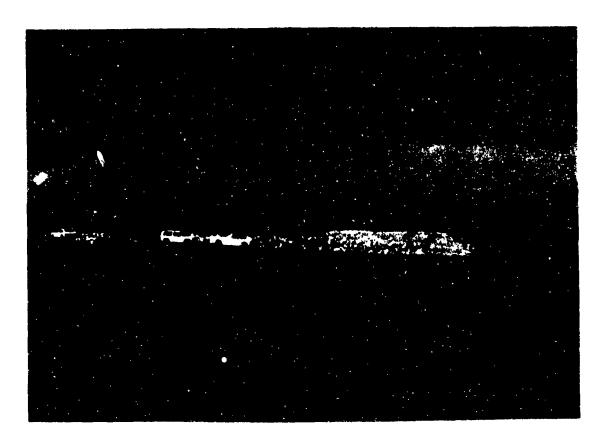
67. 10 July 1986. Completed french drain installed in upstream right abutment clay blanket to intercept seepage from limestone.

68. 18 July 1986. Aerial view of completed embankment. Looking upstream from downstream of the right abutment.

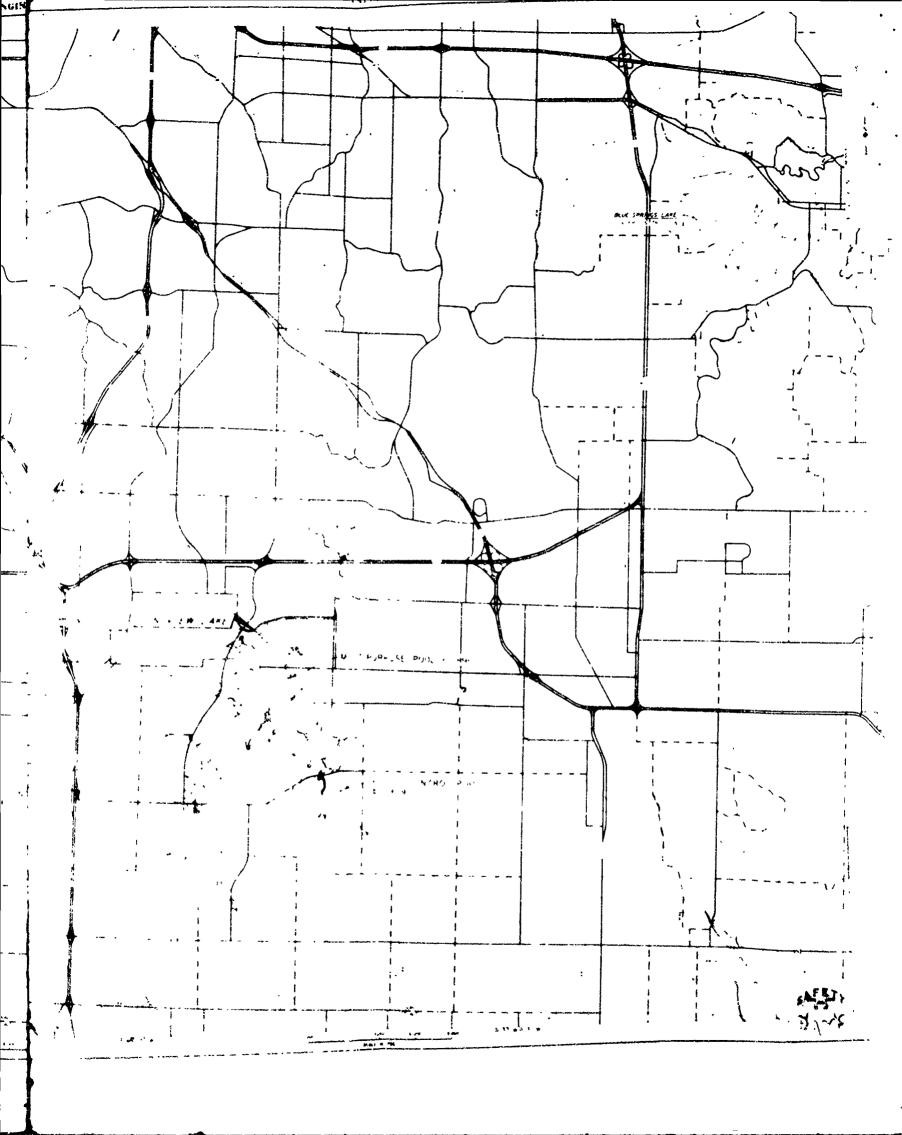
69. 19 September 1986. Upstream slope protection with pool at multipurpose elevation 891. Looking toward upstream left abutment from right abutment.

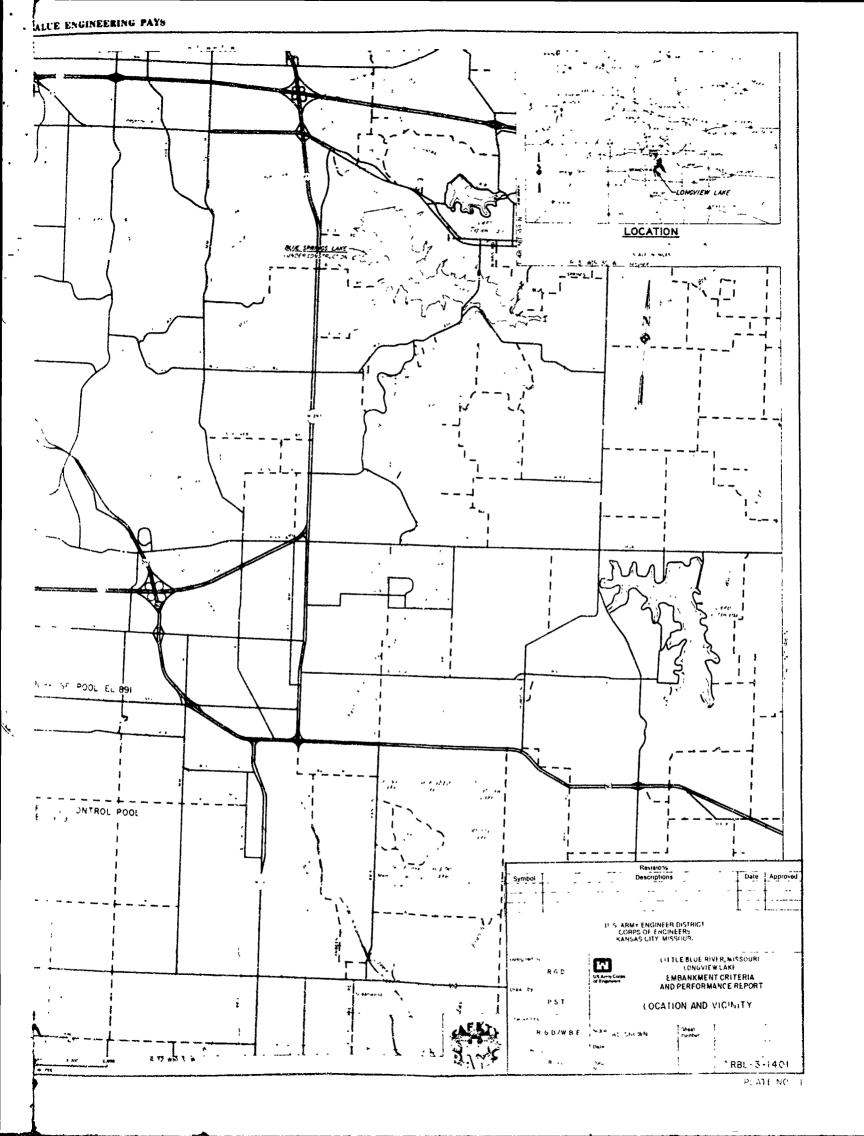
70. 04 October 1986. Upstream slope with pool at elevation 897. Looking toward right abutment from left abutment.

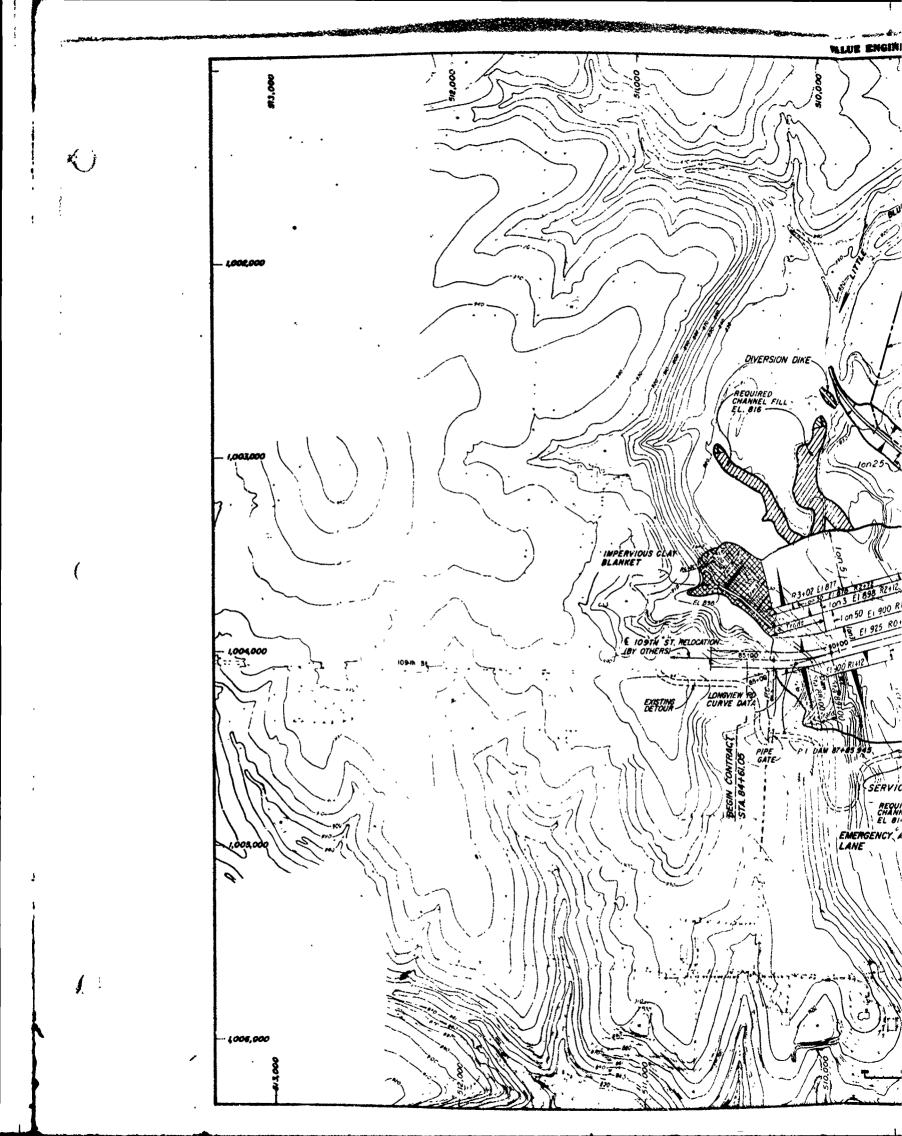
71. 07 April 1987. Left abutment slope protection with the pool at multipurpose elevation 891.

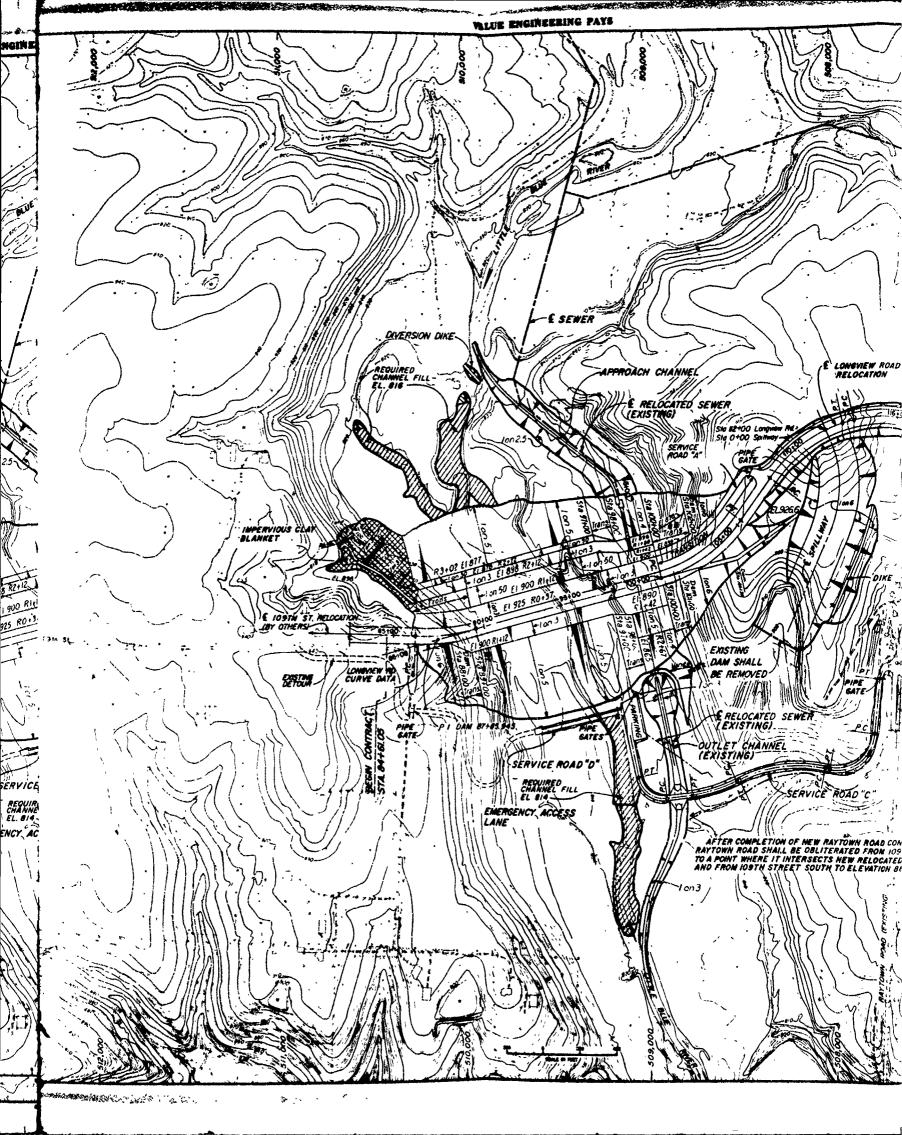

72. 07 April 1987. Completed upstream right abutment clay blanket area.

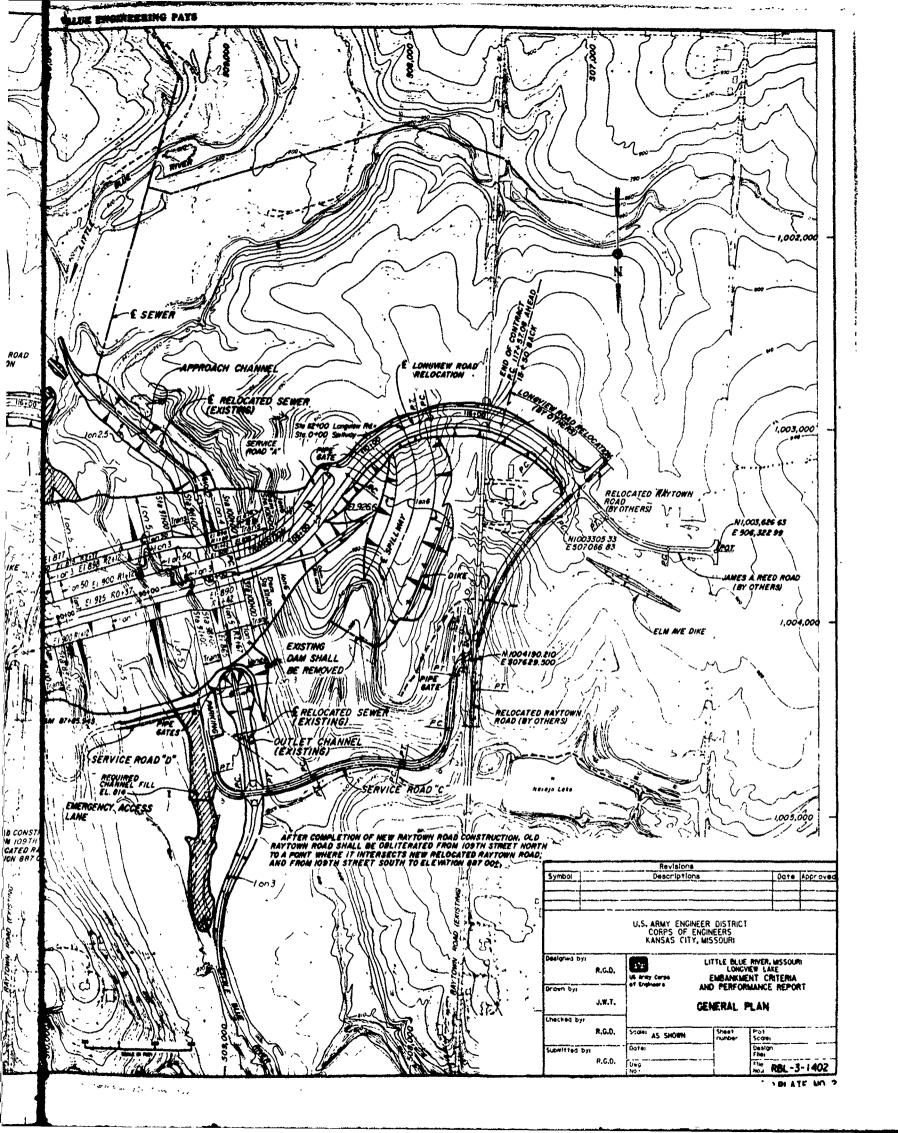
73. 19 September 1986. Downstream left abutment contact and stilling basin.

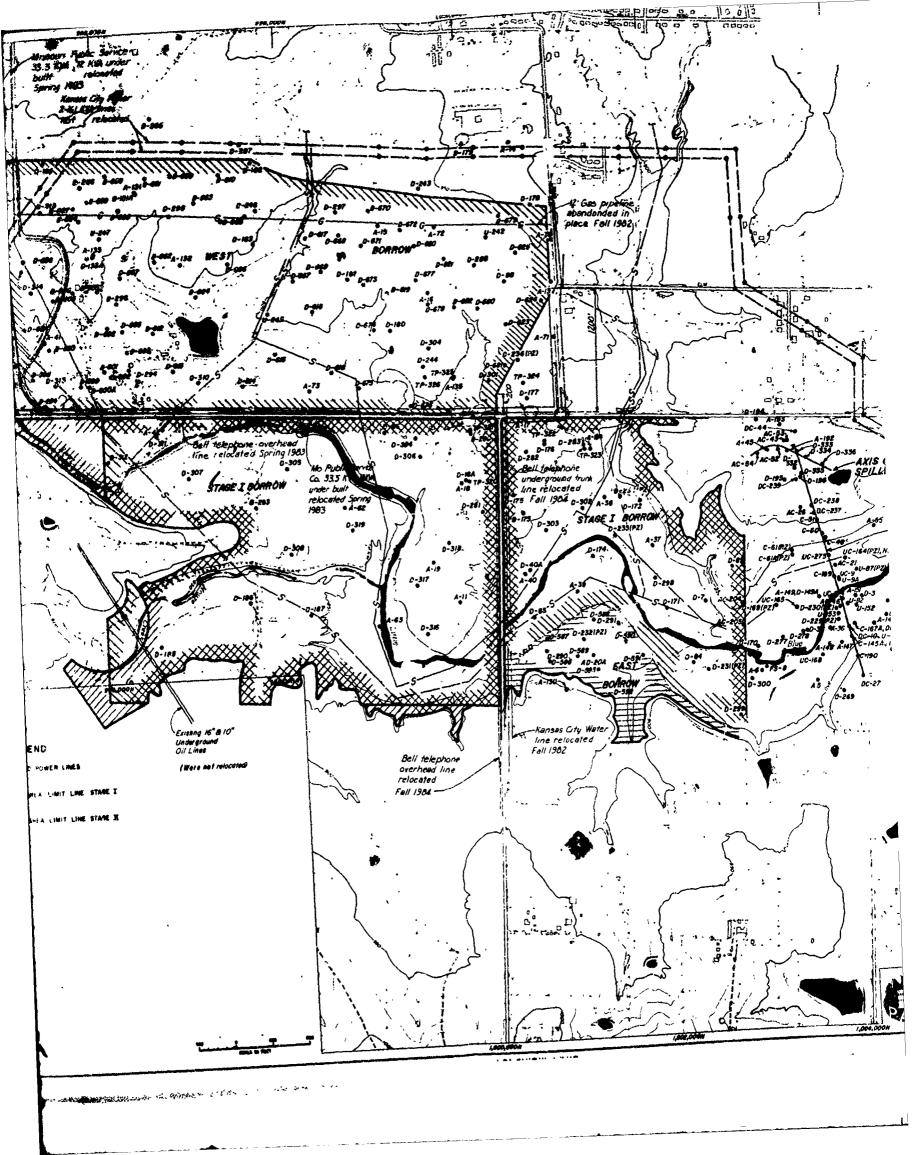


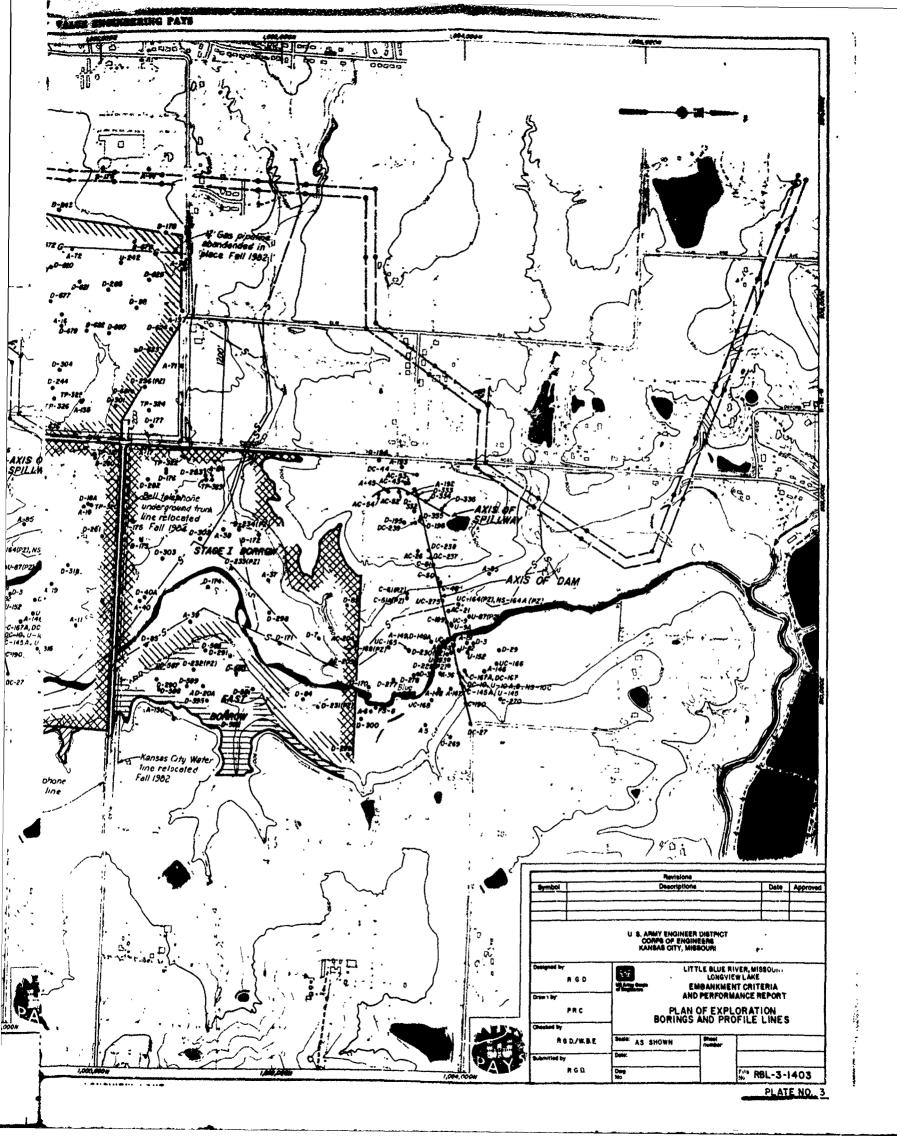

74. 07 April 1987. Completed downstream slope. Looking toward downstream left abutment.

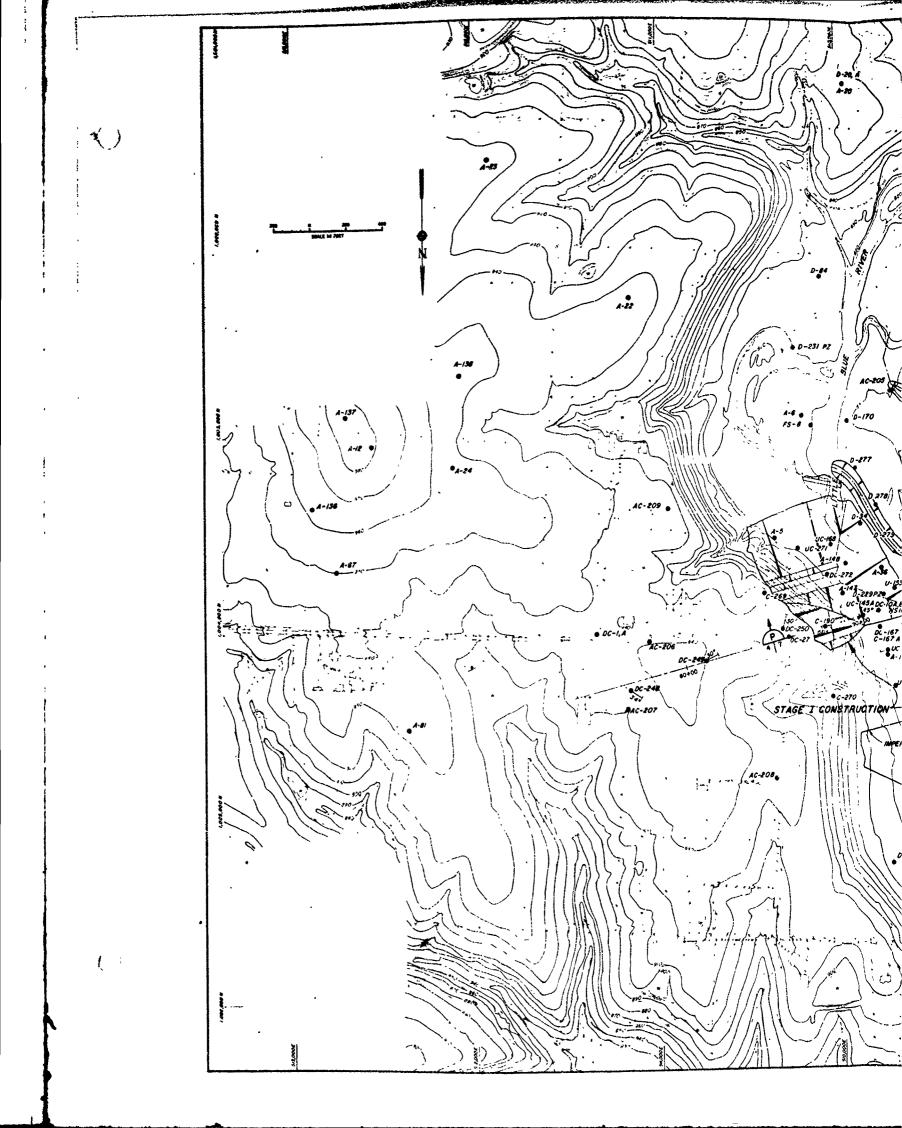


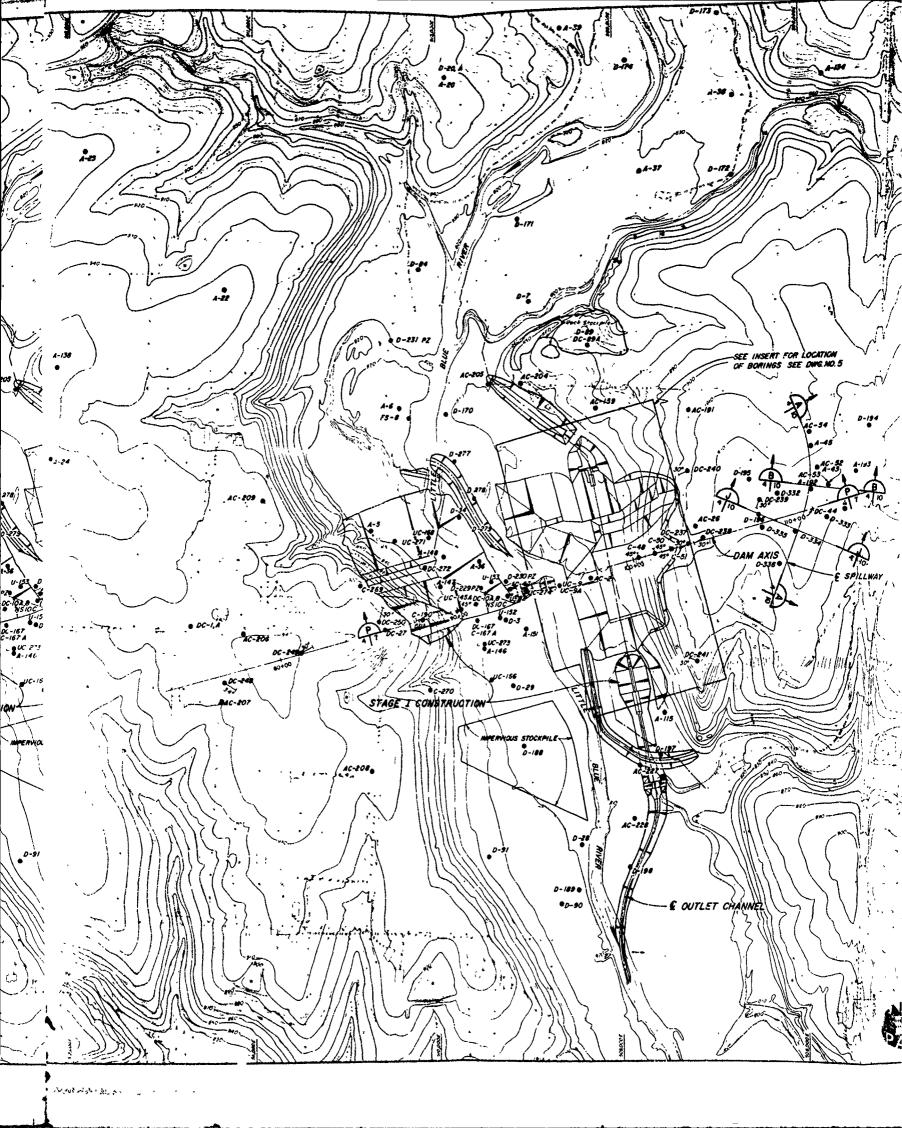

75. March 1990. Completed emergency rock stockpile on downstream left abutment. Looking northwest.

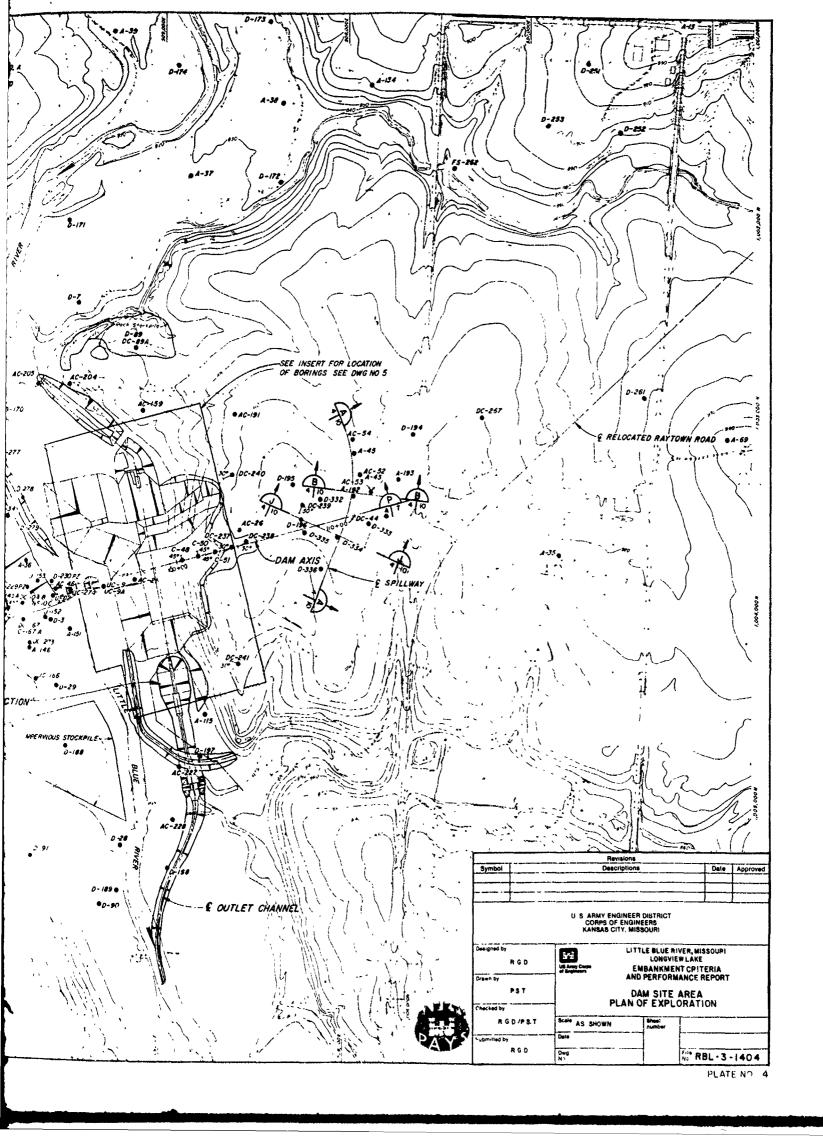

DRAWINGS



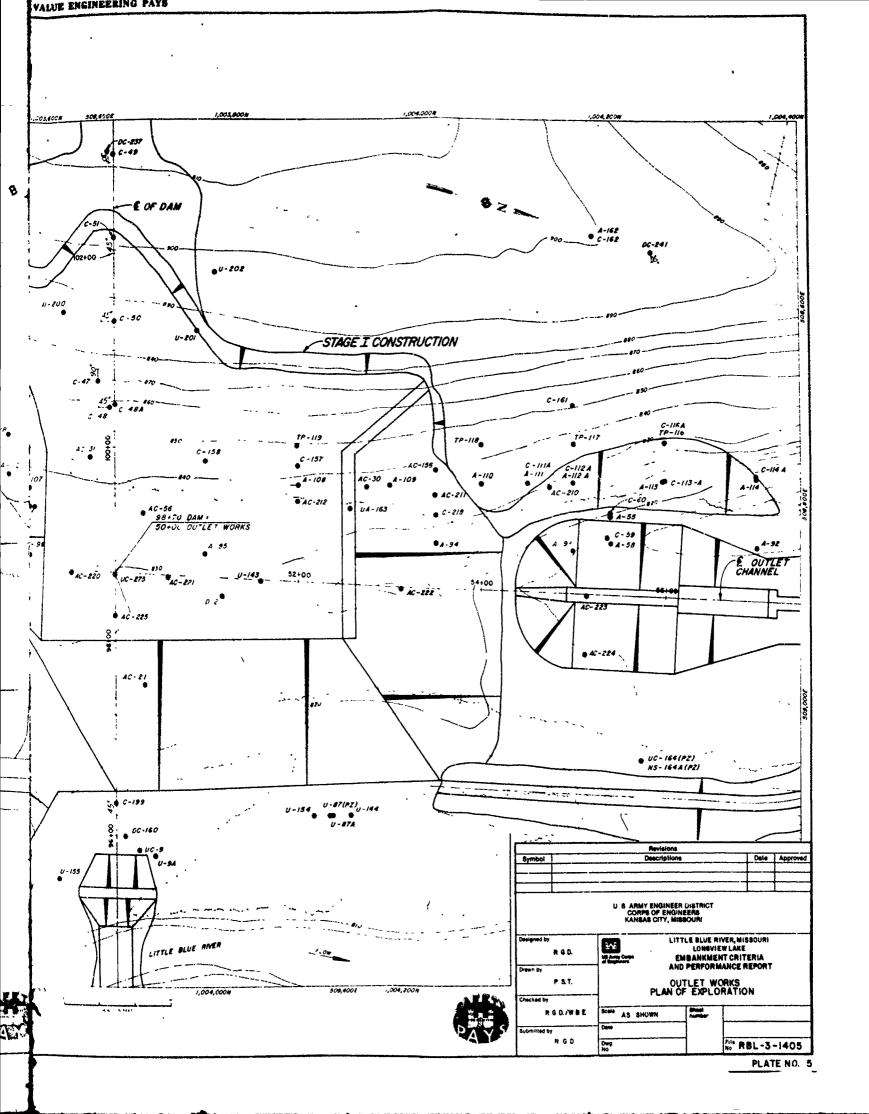












-	GENERAL GEOLOGIC COLUMN						
SYSTEM	anium)	POMMENTION	MEMBER OR 2006	STEECL	THICKNESS	GENERALIZED DESCRIPTION	
		# PP-Y-U.E	e estews 1.e			, page 1 falls and we have the first that he had not been an extensive to the same and the fall of the same and the fall of the same and the same an	
			# \$ 4	•		sales or investor on the specific to a move doctors of the second of the	
;		*	a.ca		٠	and the first on the party of t	
			14,101	-		\$65.5 get vis to receive the second of the gets and one course value contains a begin and a \$65.5 miles to the second of the s	
		3	\$1484			y the go got at any prime of attended to got I seek yet have	
•		SALES		1		pay the pay with any that of ay come should be sufficient	
	(184)	NO.	M. HPH LY		ر و،	[MBSTON] Some Ary that service lines of the servicing to a sessed or in any area of the parties	
·	•		afizatur est a	+		Service of the servic	
		L	1000 to 100 to 1	1.		\$ 0, 00 to W. Do \$0, 10 00 00	
		40-1	tt	4		Tarket you a real of the contract of the contr	
4			70-3618			EMESTICAL materials that the orthogonal transport on the aleman and providing and an area of the orthogonal transport of the orthogonal transp	
3		14	MINUS I'I			SUB \$ 15th the trans trans of the transfer and the property of the section with sections where	
3 345	١	Ŧ	21/13	Ĺ	· .	\$8 CTMB(and proof to the party), saderately had by arey thing to a server get by	
ĺ			219y 4	1 ,		Angles (Mg) the second of the property of the second of th	
	į		7.84 %		·.	and a complete of the complete	
;		د ا	79e i	1		AND A END OF STATE OF THE STATE OF STAT	
		3. 4.60	* 184	Ţ - Ţ	,	A CARE DAY SUPER BY	
	hts.Hyty i ,.	Mission.		†** † 		Affil Affilks in 5 Affil working to the property of mining and another and an incident and an	
•		ĺ	24c)	1 !	٠, ٠	Company Service Control of the Contr	
1						Subject of the subjec	
				,	,	4% fea We find the sense yind 2 the bested grown sale only with a representation of the sense of	
1	3		- ^ \	- + 		mile with the perpendicularly of this bedden to making dark process, brack or source of	

% ₹

Macross recent of the history representation

See grade

The state of the st

HC COLUMN

A 800

AUPL C

, ·. .

u,

GENERALIZED DESCRIPTION

of the institute to crystation method to thick budden resolutions

gr pro

The other 2/3 of conders made topic have dence to fingle a yearstan this to

17 2 th yes and accessary day gay short heat and sads only controlling decision to their feeding tostal region and controlling

TO THE HOUSE OF SITE SHIP TRANS.

" The profit of the fa free bedfer any lacens point acresion

A DAY THE LOCK CONTROL AND SELECT IN THE BLANK AND THE CONTROL OF THE CONTROL OF

er trace tersor case common near portage.

er tersor to noting custoling then to thick backet necessively algoritic

e in which there were night after some it to 2 is notice themstown in " yes minecus data grey lower part is soft fice. carteraceous

o so as we some statuts to se to 2 only restained look to medius bedded argific rous message

. 41. *** * . We EST

i a nam in them part medium gray.

If your to ment there installing thick bedded angitive educing the gray.

their gott and it audiorably have any successor handy this as

THE ENGRAPH THE PARTY OF PARTY OF THE PARTY OF THE AND THE PARTY OF TH

ي الرياد " ومام عبركيه دا معدد مد معدد و در ١٥٥ ماه و م

the state that were the granted to terms. This headed to succise

Winds to that by Kedy to bedden to surgice XIAS one a

were got and the got and the first or delegating the first of the got of the

that get a microphysi medium to dark grey with comes of internacional and

and the and bonds of light gray is throw in national a cook is fall the the fig. and the field endertone despitable and among only are commonly.

the the gray in the medium grey is follow parting, and payables.

e time spirtings and bads

* "& imideratory hard, thin bedded, gray to dark gray with S . 85

th are a rurd, thin bedded to massive, dark gray to black occase. - 34

. ., 1,60

UNIFIED SOIL CLASSIFICATION SYSTEM inorganic sitts and ser, fine rands rock from sitts or case, fine rands or cases site is slight blasticity.

well graded gravels gravel sand metures little or no lines

GP Profy graded gravels or gravel sand malures settle or no fines

Sity gravets gravel sand sittle matures

Com gravels gravel sand clay mutures

Well-graded wands gravelly saids letter or no times Poorly graded sands or gravelly sands rettle or no "nes

Sign sunds sunds. It in allum

SC Cuses vands sand clay mintures

CLI plasticity gravel's cars sandy coays safty class lean clays Organic sits and organic sity clays of loss plastices

Inorganic sats inscateous or distormaneous fine sandy or saffy soils electic saffs.

[CH] Inorganic clays of high plastice, for clays

Organic clays of medium to high plasticity organic sitts Pt Peat and other highly organic soils

Classification from action laboratory tests where LL and PI are shown.

Dual classification where used is in scordaine with the United Soil Classification System.

For seals on the United Soil Classification by from See Materialist Experiment Station.

Tapering Memoranique No. 3-357 Safed March 1953 and revised in 1960.

TERM FOR CHILISTENCY OF SOIL AND HARDNESS OF BEDROCK

<u> 'VIL</u>

Con ancy Elimated University of occasion Strength . Tons per square facts

- 025 05 05 10 10 20 20 40 180, 17 # > 10

BEDROCK SCALE OF HARDNESS

very " e plast . Sch Moderately hard

a te indented easily with thirm b

, ar, 119.1

Can be stratched with fingernal can be stratched easily with lande which the stratched with fingernal lift will to 5 ratch with hinde Calle 1 be scratched with an le

LEGEND FOR L'S

Part of Station and Range 1 18 a Connector

Part of Agreemed Director

Devotes of Obstocked Boring)

Mosture content-per cent.

Exist in annisates a clapset time after or illianter deserving and services.

Content as massification determined in abore Field to air transporturis more immunication fill Sample more immunication more in-Percent Lest Drill Water

Last Core (Sedrock) her all the recovered total com-

Drameter of san pla

eCm et trom profit dir section may be Upstres in a long remaid (Leid or Riv) or Right or Left (H.). From the far of acts a gree speed at the

TYPE IF 1

MAP SYMBOL

Vertical bring inclined bring in miral direction and letter it is a

ARBREVIATIONS

1'	4 to at y	an)D	Marr;	168	lear her	tud 19,	round trounded:
•	114 1	got rea	arrite dict	, κ	ign tr	540	saturated
4	3 * y 1 *e	607	Extreme .	ls,	mestone	scat	· cattered
3	s a decis	4 91	the they	14	'ght	50 (V)	and (sandy)
· · ·	# 1 teffed bedong	te	***	31	(AP	584	severa:
• •	Der 1 in b	1.0	1 and	10	EST COLE	h (y)	state ishaly.
54.	* - Re	frn	1 100	LDW	igst delt water	5 ty	silt (silty)
E	tur	fes (S)	tussic I asil tercus	med	medium	515	silt it ine
	to cities	frac id	fractures infracturers	mic	min aceous	· ·	sight y
٠.	to a r	frag (d)	fragment fragmentes:	T- 0	n neralized	sics	5º reous
	lites a tressated	1,	re at the	17-06 (11	miderate miderately	sins	sticker sides
* **	* wer	441	1 , le	en st	muttled	56	soft
,	brown.		grain	9155	massise	sol (d)	solution isolutionized:
	ar se	ž.	gradation	"NS"	m · '	55	sandstene.
	sk arecus	810	greer	mil	mater al	51.00	stained istaining:
4'	& Dring Rolls	E'+ 11'	gravet (gravetty	mtx.	matrix	511	Stiff
41	Act;	8/9	14.	200	ALGU MS	Sty	stylchite
b		RYP.	gypsum	4040	numer sus	٧	YPIY
	Tappe		r gh angle	At the	kirasinna i roccasii na fir	vert	ver*:(2)
	ic alation	ta	กตร	v.p	othe	127	VUREN
	de Saveys	שות	heared	Of	hrange	*	water
2	11 Sed	tur	Purit intal	'h	argain t	*	with
rr ta	emented	77.5	rterbedded	641	Lartians	417	weathered
	W 17 M	n'i	erclus ins	o:	pri pitted pitting	eht	white
. 19	IN "Bright	6120	teriam nated	11	past	u bdd	crossed bedded
12	ngomerate	"	ereg ital	pila.	plate	K'O	crysta i na
	umble.	1.5	nt il ter	şin.	p'ar €	¥	yerian
,	Gensa	la '	1 m angre	elg (51	parting partings)	When us	sed as log symbol
24	dare	an idi	artinae siantifaleus	ut. er	quartz 1244 12 te		er & capitalized

Symbol Designed by

Drawn by

Checked by

RG Submitted by

UNIFIED SOIL CLASSIFICATION SYSTEM

Inorganic sitts and very fine sands rach flour, with ur clayer line sands or clayer sitts in slight plusbody

inorganic steps of low to maintain plasticity gravefly clays sandy clays safty clays lean clays

Organic sists and organic sisty clays of low plasticity

Inorganir sits micaceous or dietomaceous fine sandy or sity soils elastic sits

CH Chays of high plasticity tel clays

Organic clays of medium to high plasticity organic sitts

Pt Peat and other highly organic soils

With graded grounds graves sand

آ دڙ ڪي

(4 + ..

whar

RG 27 PR ed by RGD/ ited by R

Promy guided gravels or gravel sand medures. Hole or no fines. Shy gravets, gravel sand suff modures

Copy grands graves sand clay methods

Makingraded sands gravelly sands while or ny lines. Floory graded sands or gravetly sands little or no lines

SW Site sands sand sitting it ones.

[SC] Clayer sards sardinas mistures

The state of the series series are instances and the series of the serie

TERMS FOR SUNDISTENCY OF SCIL AND HARDNESS OF BEDROCK

SUIL

Consistency Estimated Uniter In at Compressive Strength Tons per square fort

vers s m < 0.25 C.25 0.5 U.5 10 10 20 20 40 Med um Shift Very Shift > 10

BEDROCK

SCALE IS MARGINESS

Very vitt or playtic. Soft

100, 31211

an bi-indented easily with thumb Can be scratched with ingernal an be scratched easily with linute art in the scratched with lingers a ti-th with to scratch with lande. carrn tibe scratched with an fe

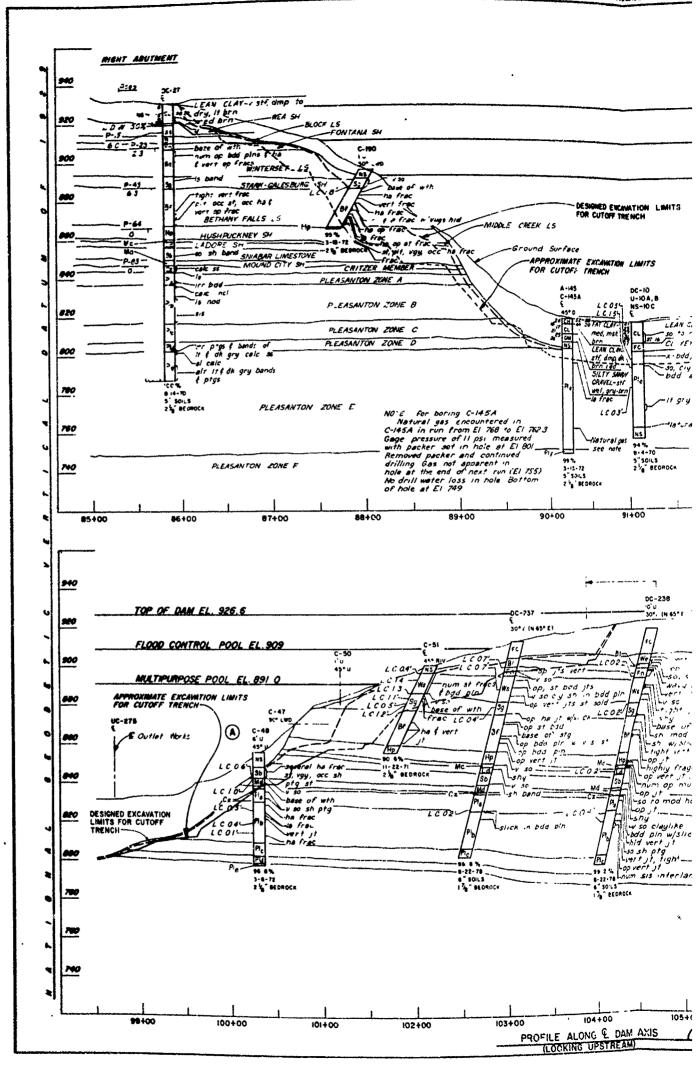
LEGEND FOR LOGS OF BORINGS Plastody index Liquid limit— Non-number *Offset for Station and Range or Bio Good wres in Vertical Angle and Direction Bondfor of (Detection) E10000 Nonthire content-per cent Elevation and date for etapset time after drallings - LOW 25% Percent Leet Drill Weter ----- LC QC-Part self core recovered in bedrock-95 68 4" SOLS 24" BETROOK Diameter of sample ~ *Offset from profile or section may be Ipstream or Downstream (U or D). Landward or Rivensard (Lied or Riv), or Right or Left (R or L) as defined. Prec use test and actual pressure uses at top of test zone gom loss 5 TYPE OF EYPLORATION MAP SYMBOL COD' DESIGNATION O Drive sample nule C Core hole P lest pi inkludes power auger 24" or larger dameter) U Undisturbed sample hole A Auger hole hand un power auger less than 24" diameter NS Not Sampled if-leid Classification from subtriess onle Vertical boring inclined boring showing direction and vertical a gie

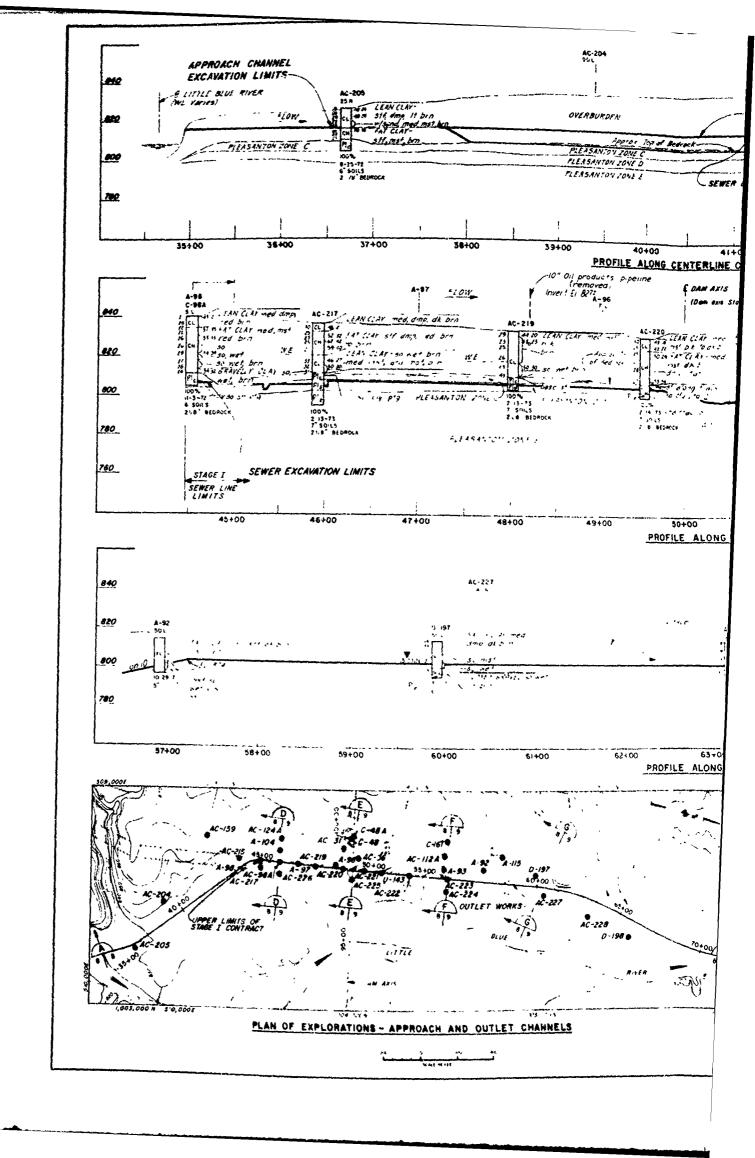
ABBREVIATIONS

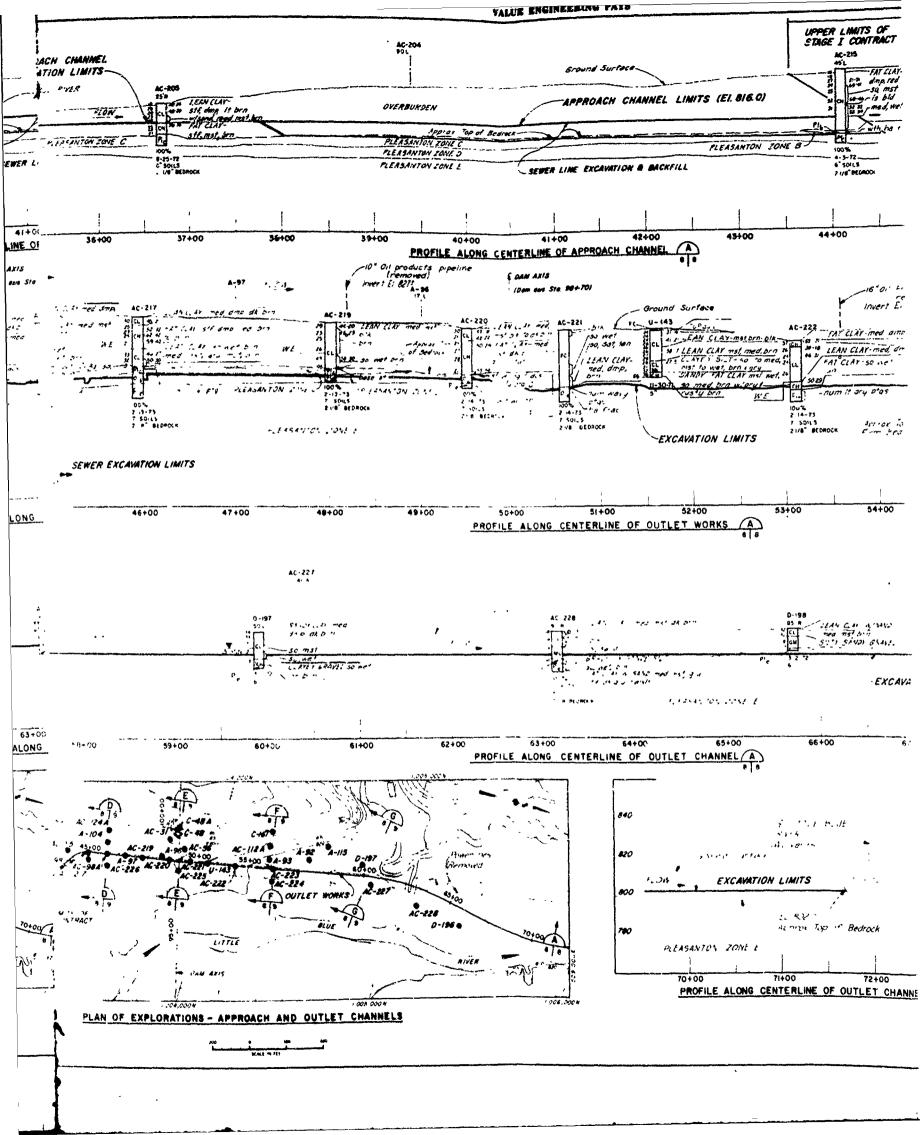
•	A ten at the	dmp	Tares	163	reached	rnd idi	rounded
•	* * *	روا ړ.	dyenite idakmite	hg	lignite	sat	saturated
•	\$ 20 10 10	est	CT, Giubit	14	I mestone	∨ at	s-attered
,	3 6 468365	* 191	tine finely)	-t	ाश्चरेष	56 fs1	sand (sandy)
	+ 7 "+ "ded bedding	le	fGf1	ю	i Sose	YEV	everal
	Perform N	fig	* Red	ιC	iost core	sh iyi	shale shale
***	E1 x **	ten	form.	LOW	ios' drill water	((y)	self (selfe)
,	D ue	fos 15:	tossi itossiiterouti	med	medium	5/5	SiffSt ine
•	St. Juder	frac (d)	fractures (fractured)	mic	micaceous	51	st ghtly
• •	t 4 +	frag (d)		mm	mineralized	NO	1H Chiun
٠ ;	I him a brecolated	1,	frable	mad up		5145	Si kensides
•	r •e-	15	t sale	m xt	motried	\$0	stell.
•	Dr ar	ť	grain.	7155	massive	10: (0)	solution iscitationized:
	4 5e	gra	gradation	met	moist	15	Sandstone
•	# #*ecus	210	green	mti	materia	st ig	Staired intainings
***	raibi nai eous	2rv 197	grave: (gravelly)	mta	matrix	sti	4 #
4.	rants	tn.	£10,	nod	nodules	str	stylchtu
b	bb e	6/9	E rpsym	num	Pumerous	.,,	AGIA
100	.56.5	N	righ angle	OCC (y)	occasional (occasionally)	vert	vertical
•	the alation	hd	hard	OP.	oper	Y87	ANGEA
,	ildy a Mayeys	hid	heared	0.	orange	**	water
¢	1 *ed	har	hordonal	org	urgan.		mith
77	-menteg	etd	interbe Ideo	04*	Lastially	win	weathered
	umnge	יאני	Incicsions	pit	pit pitted pitting	wht	white
r _a	cri retions	in'em	interfaminated	ارة	Diastic.	s 000	UTUSSED BEDDES
	ongomerate	**	rregular	úla.	plate	ain.	Chystalline
••	crumba	18 (3)	Kint youts	pin	place		velion
1	dense	l	kw angle	pig (S)	parting (partings)	y 14/15	
	3414	(am (d)	remines, (laminated)	gtz (e)	Guartz - Quartzite	MUSH OF	ed as log symbol
			sanconal francounters.	·•/	dough (4na.this	nrs' lette	r 5 Capitalized

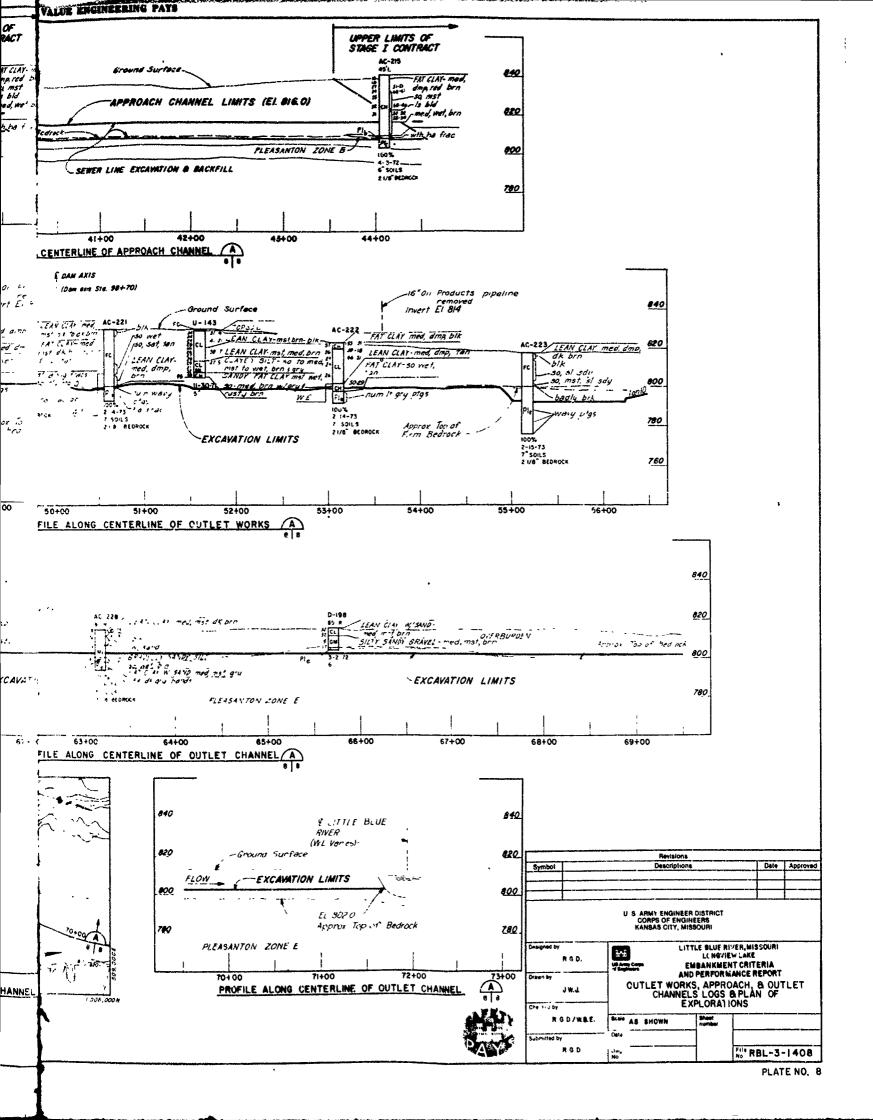
BEDROCK UNIT THICKNESS

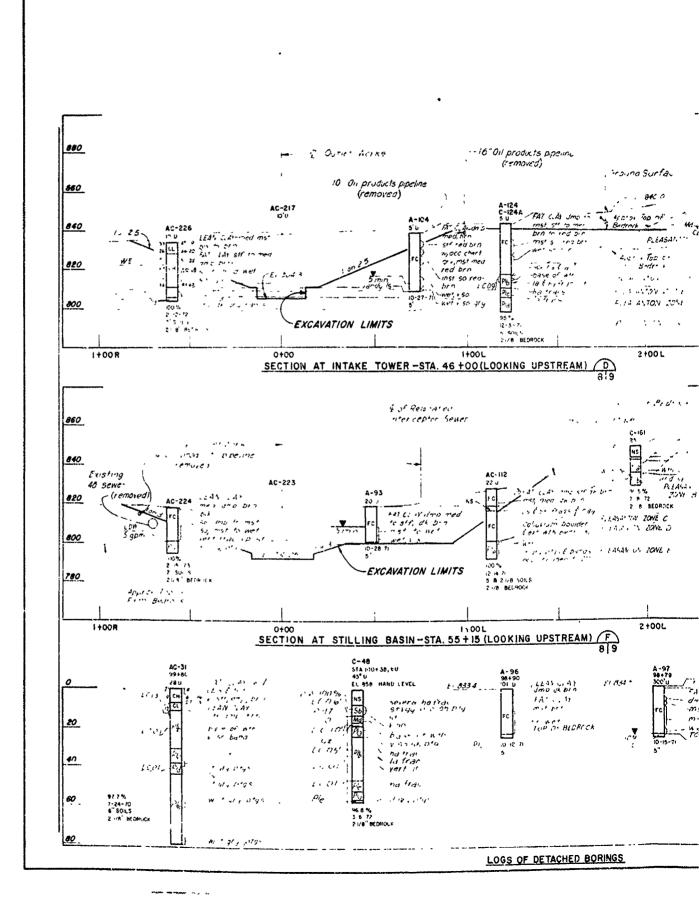
cuttings only)
ES field Section of outcrop VC Visual Classification

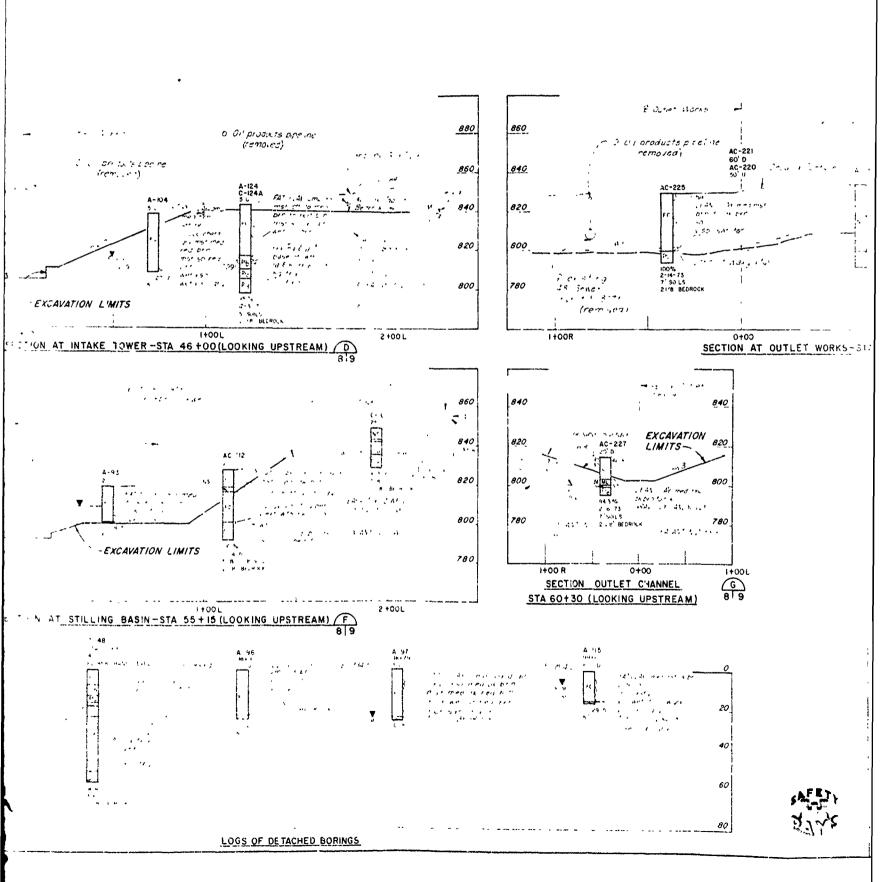

> Perling <002' > 50, 10 10 50, 02 10 02, 05 10 05, Bond The bed Medum bed Massive


SECTION IDENTIFICATION Section Letter Drowing Number where section where section is shown


	(104)	#1011#					
Symbol	Descr	Date	Approved				
	CORPS OF	NNEER DISTRICT ENGINEERS LY, MISSOURI					
Designed by R.G.D.	53	LITTLE BLUE RIVER, MISSOURI LONGVIEW LAKE EMBANKMENT CRITERIA					
Drawn by PRC	AND PERFORMANCE REPORT GENERAL GEOLOGIC COLUMN & LEGEND						
Checked by R G D./WB E	Scale AS SHOWN	2freet number	1				
Submitted by R. G. D.	Date Darg No		File RBL - 3	-1406			




A ...



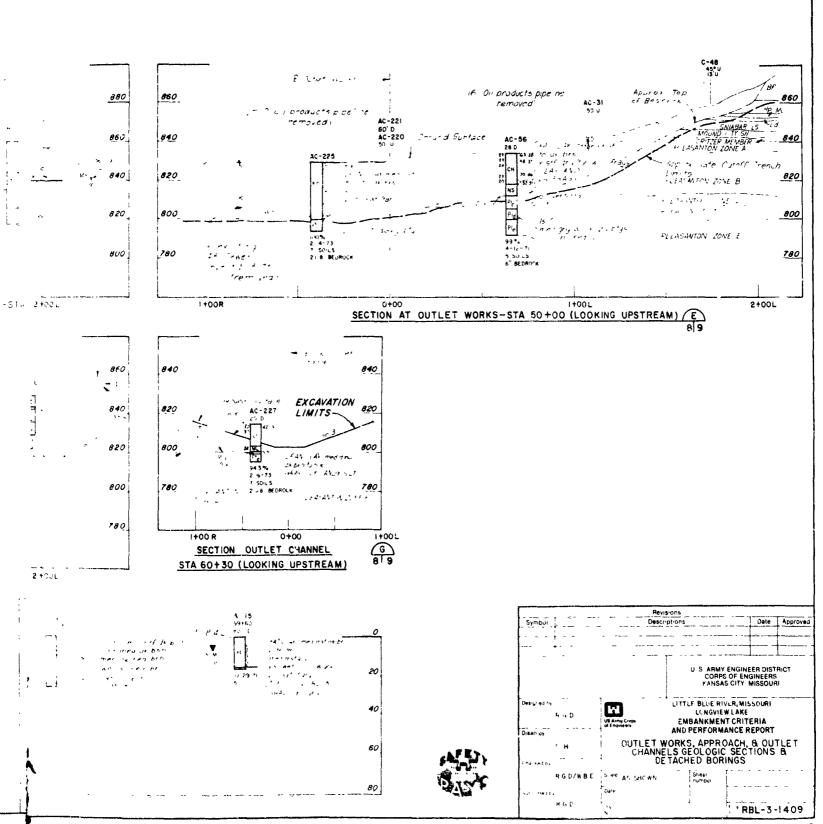
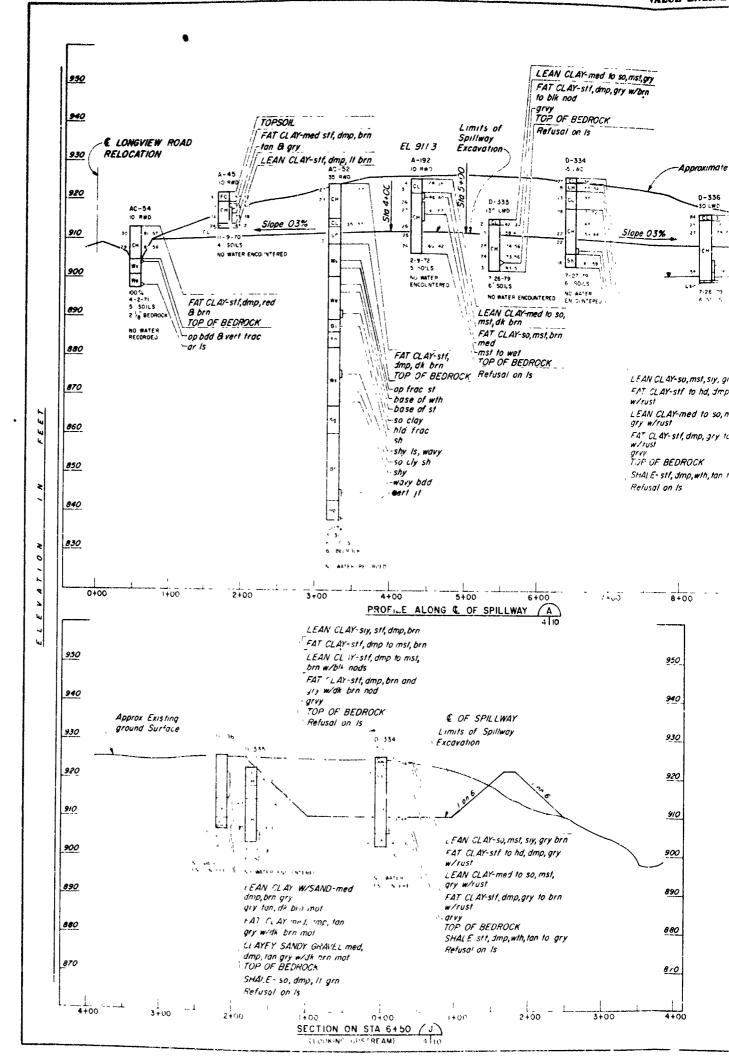
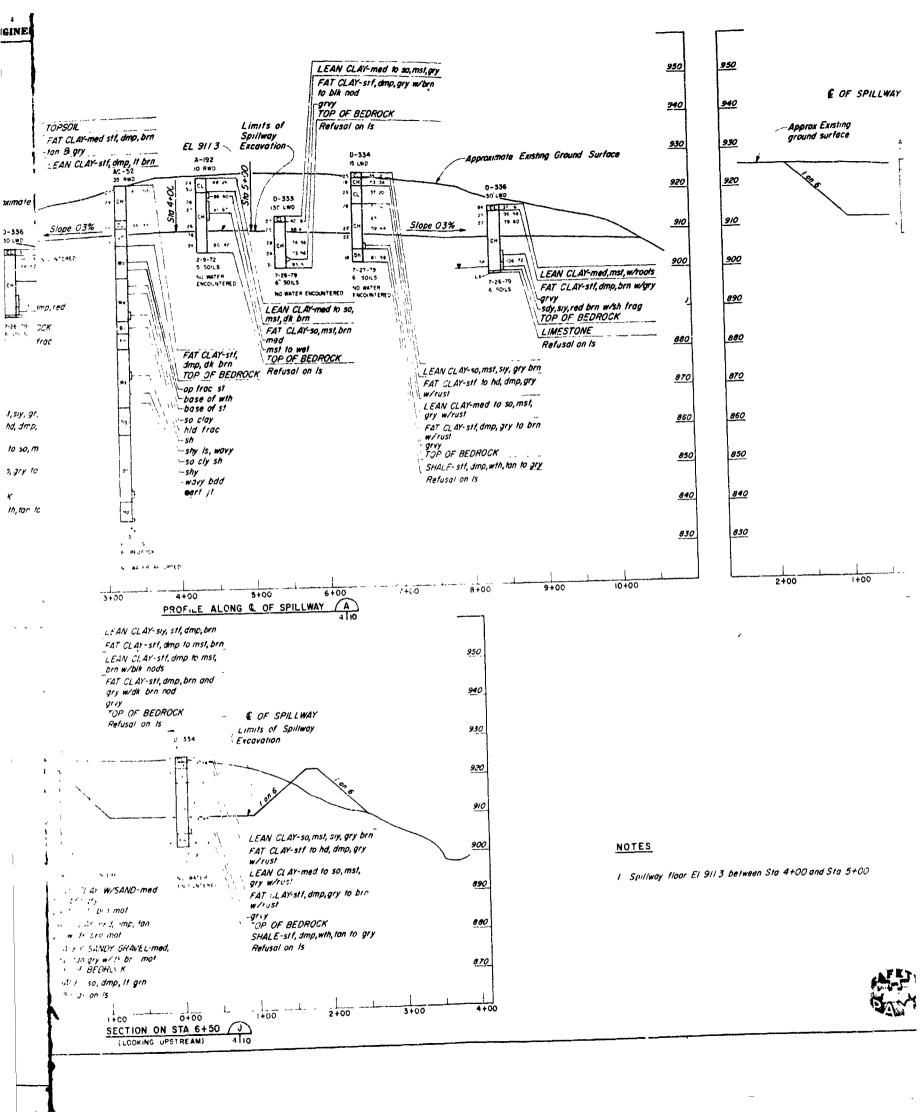
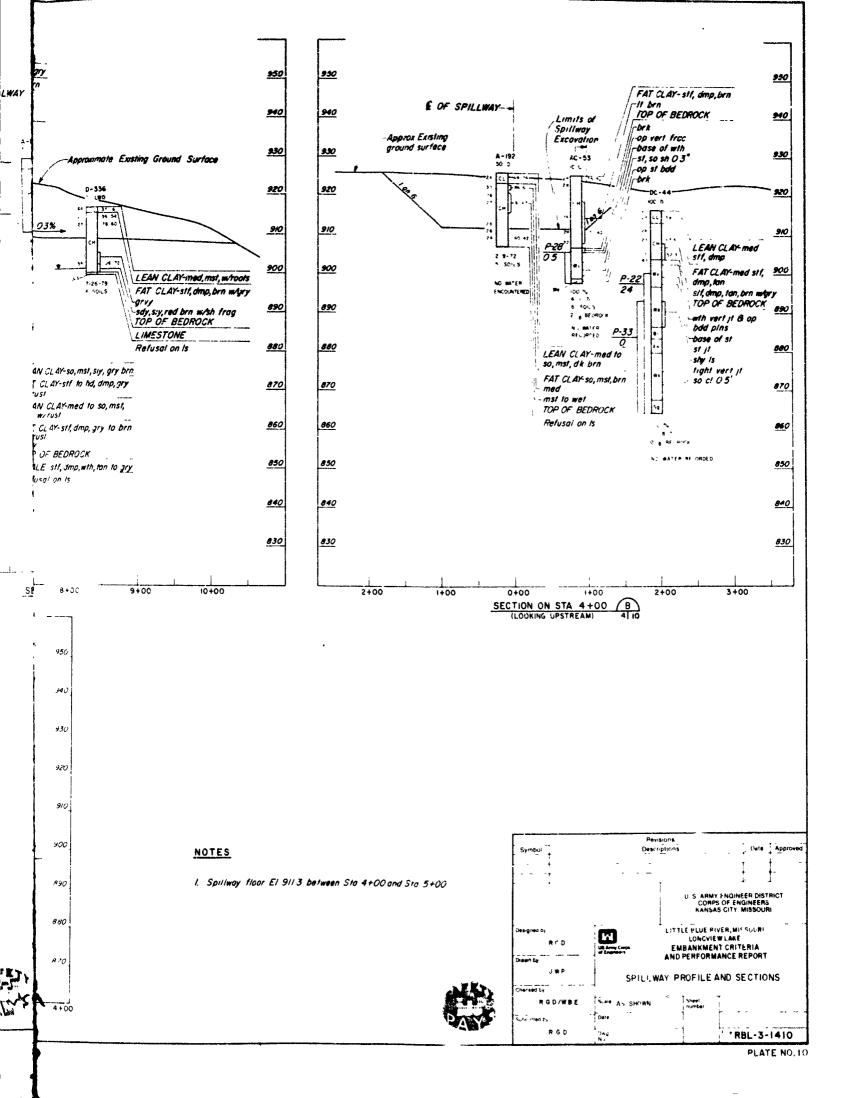
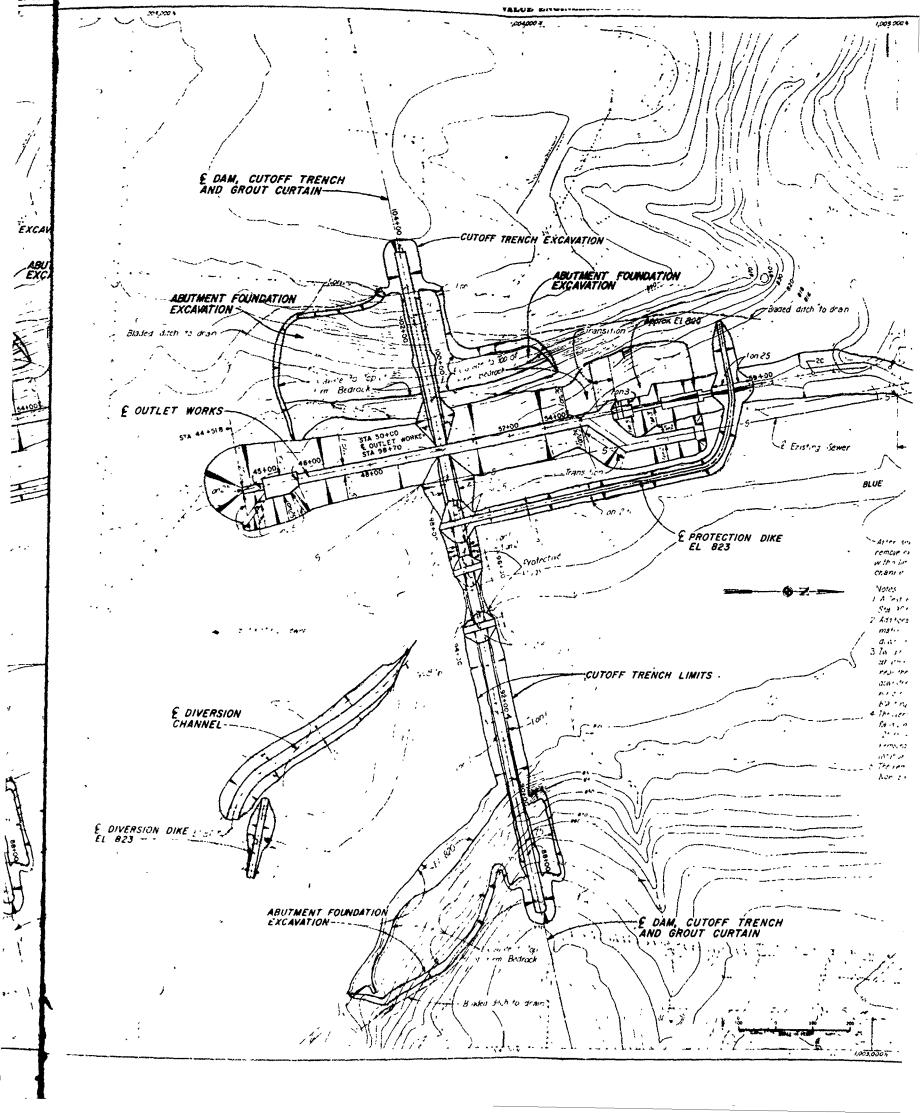
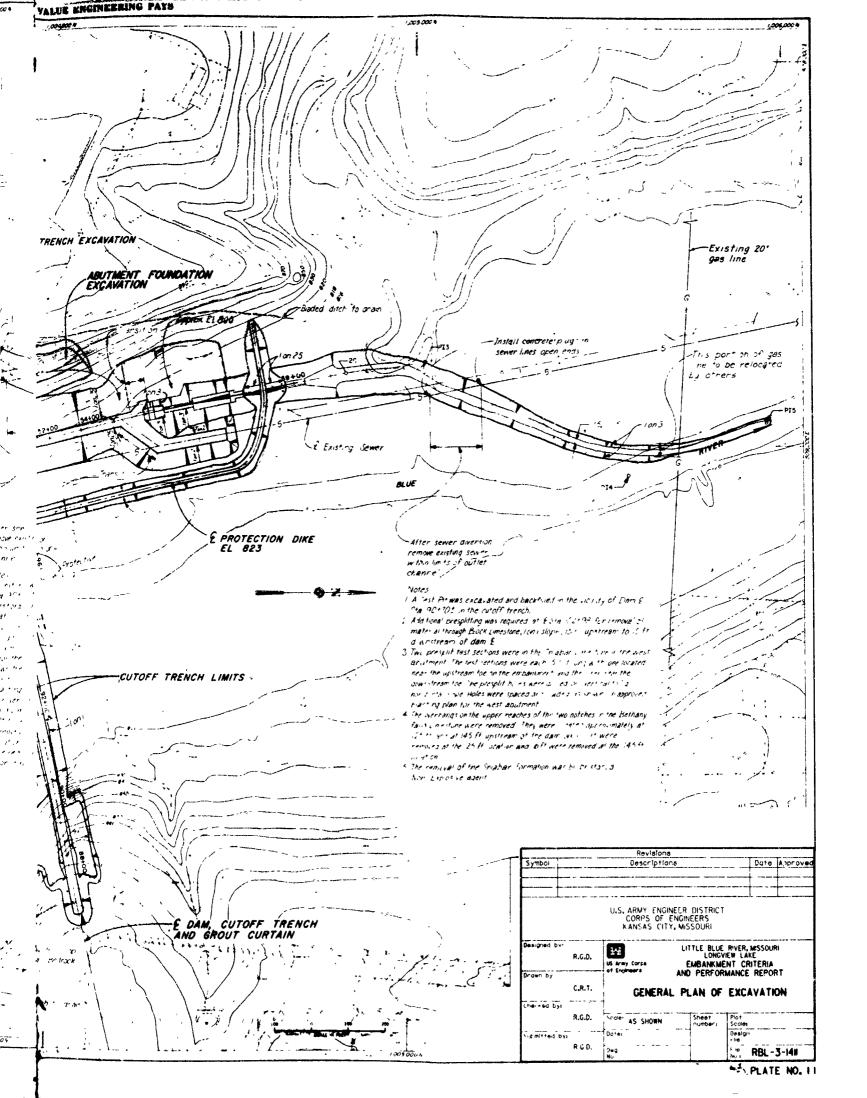
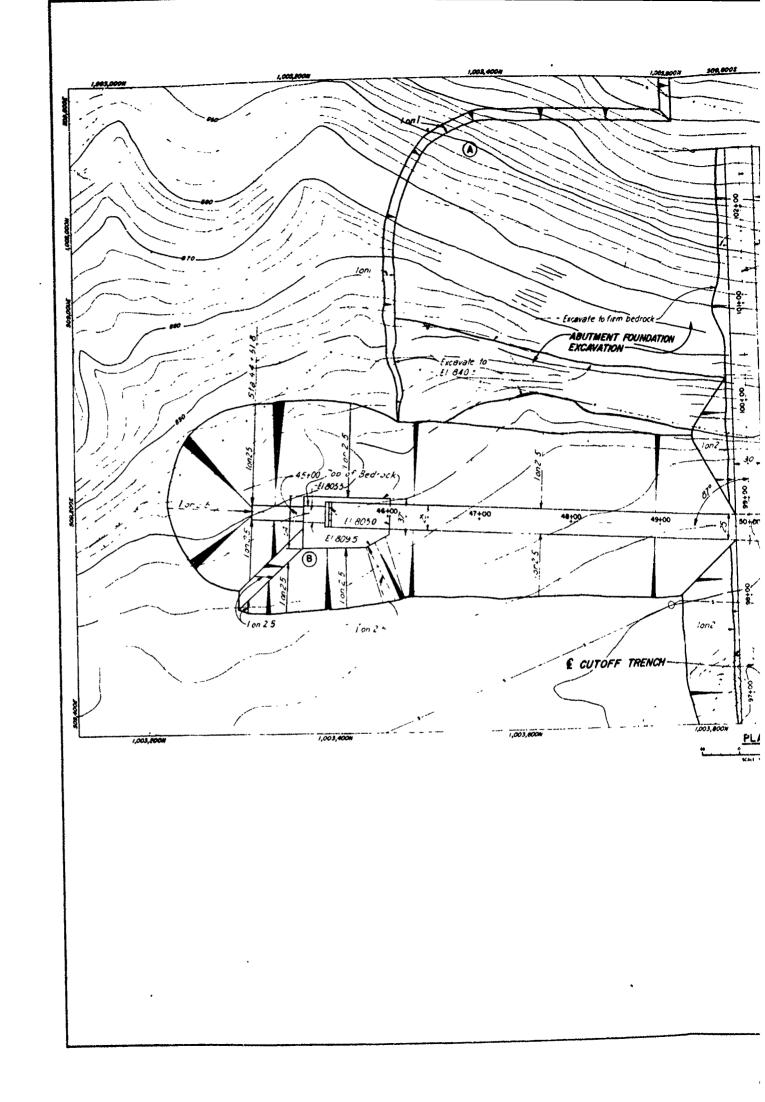
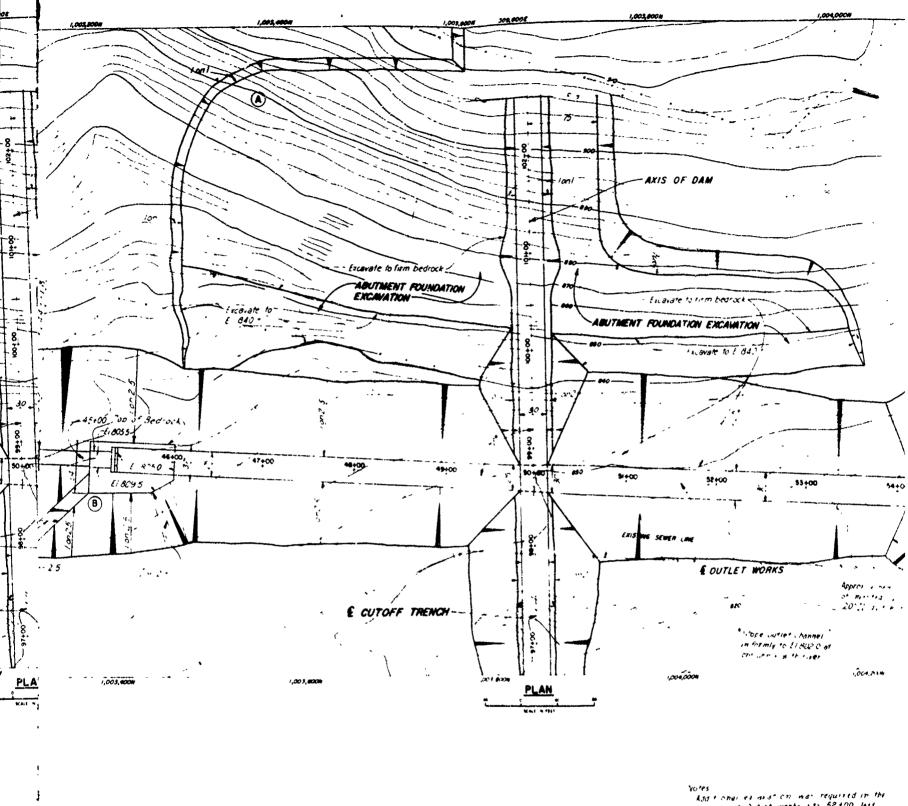





PLATE NO 9

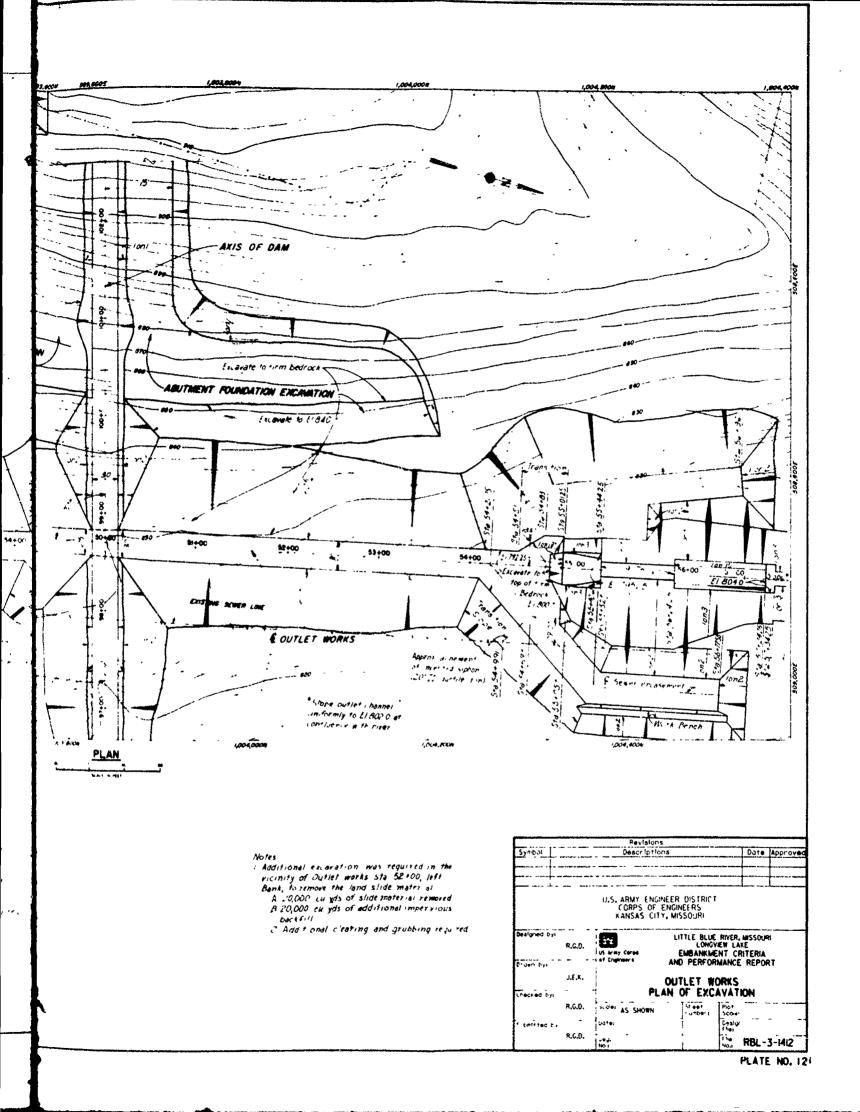


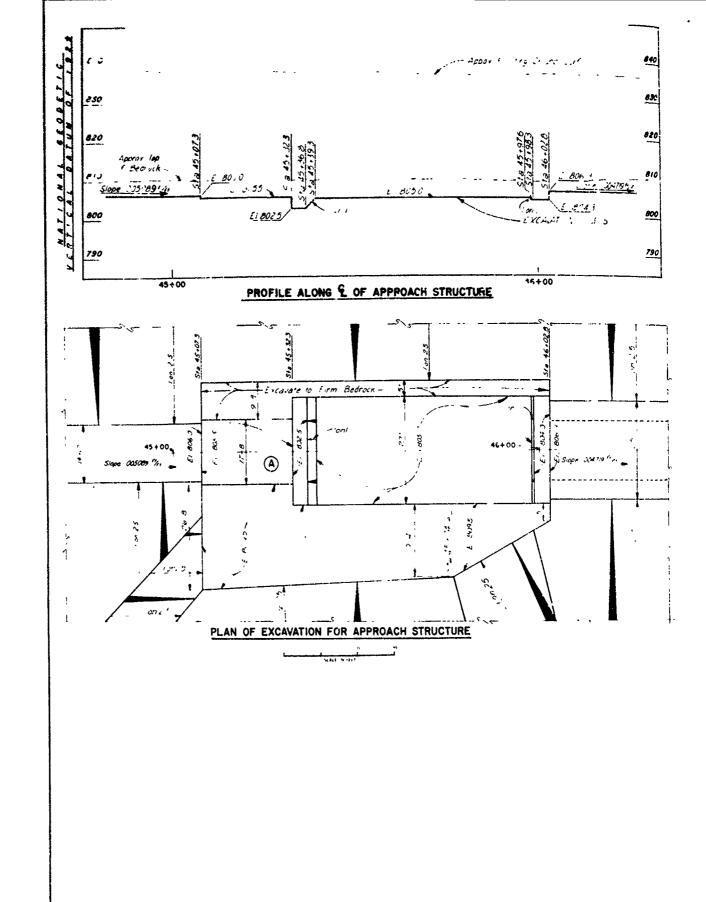

ŕ

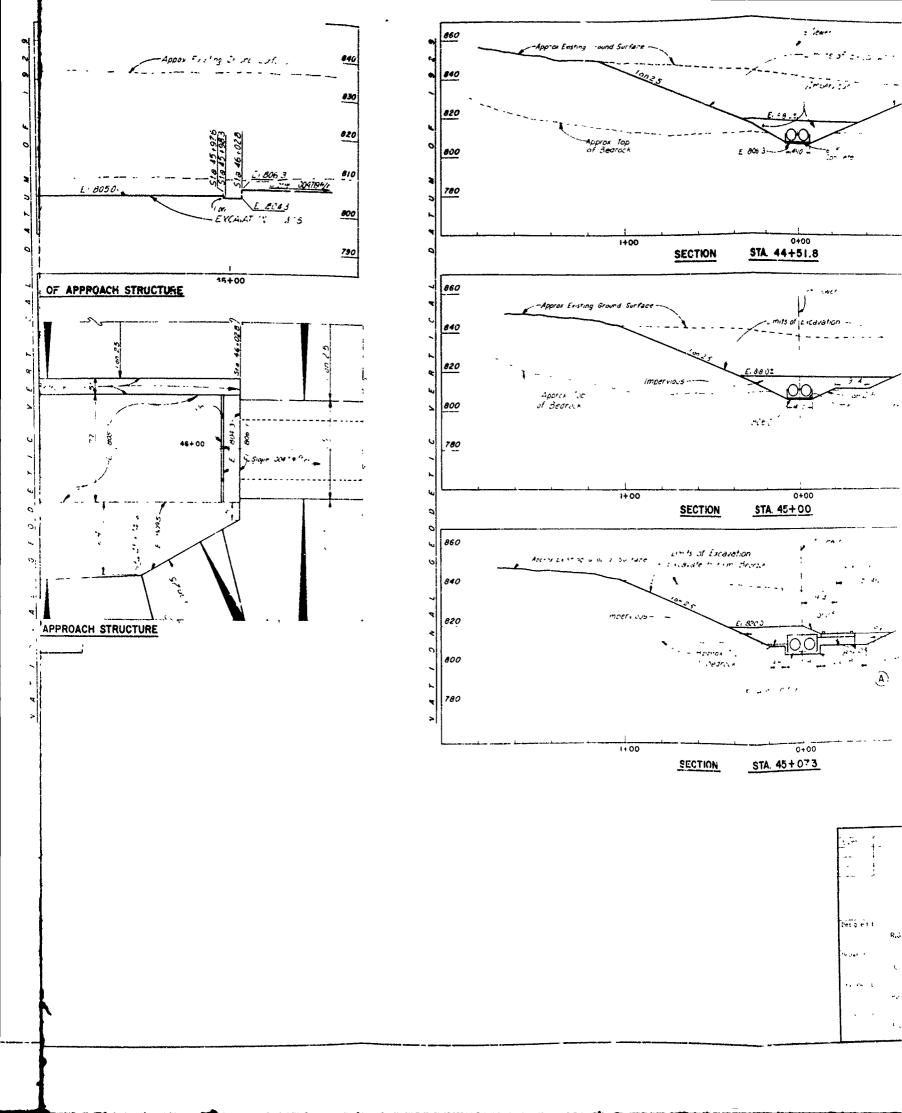


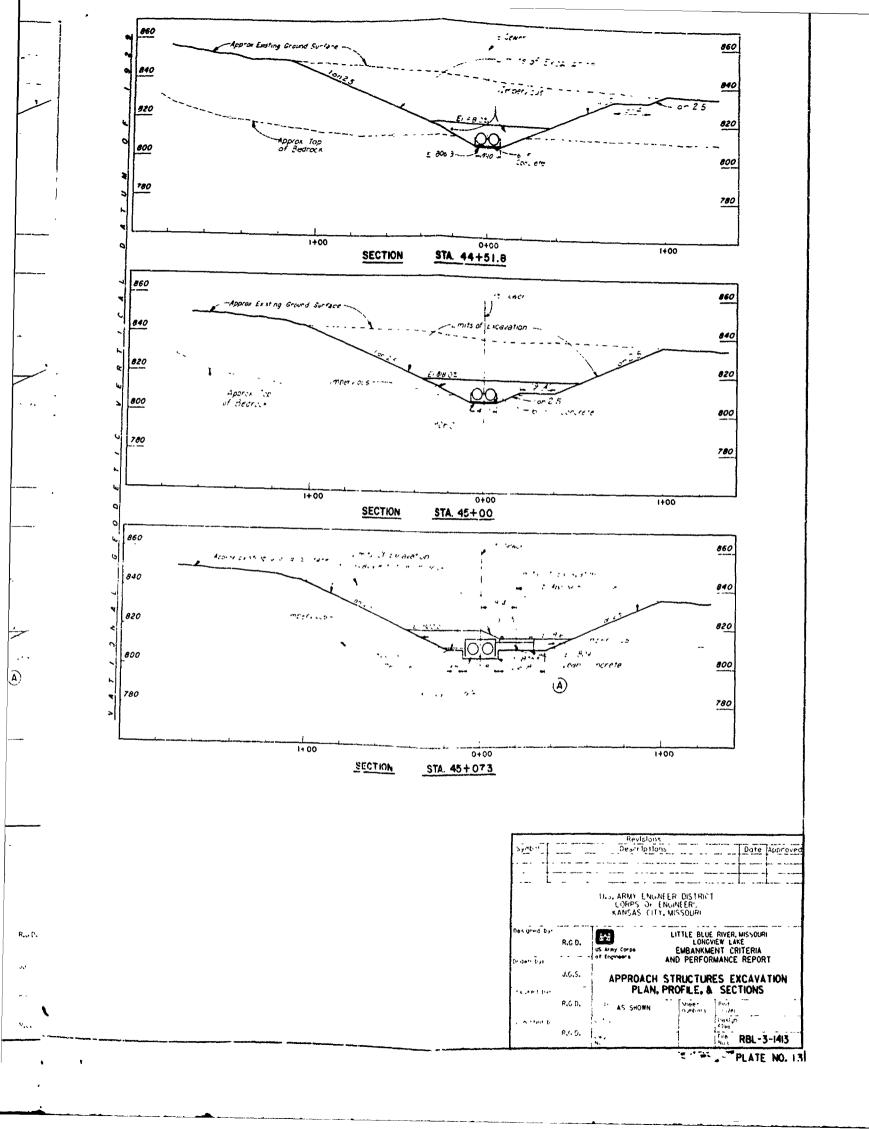


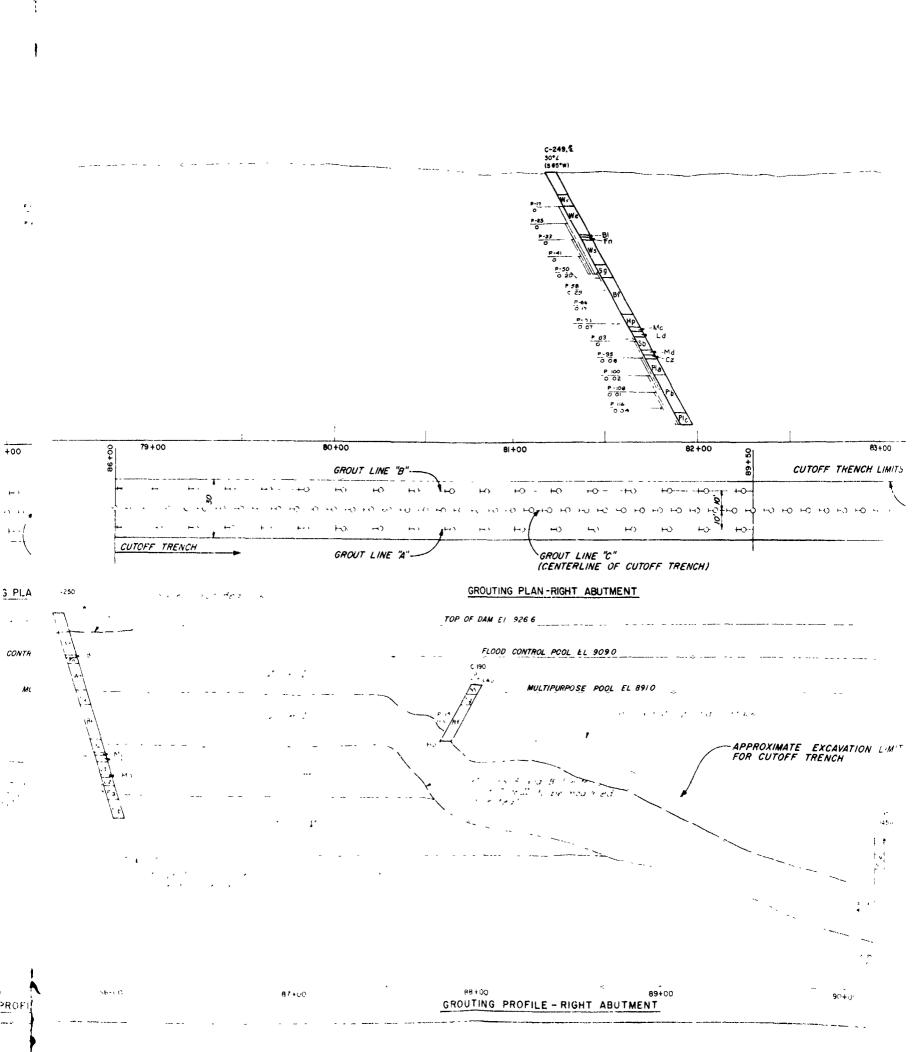
E DAM. CUTOFF TRENCH AND GROUT CURTAIN CUTOFF TRENCH EXCA ABUTMENT FOUNDATION EXCAVATION E OUTLET WORKS E DIVERSION CHANNEL --E DIVERSION DIKE AEUTMENT FOUNDATION EXCAVATION - f

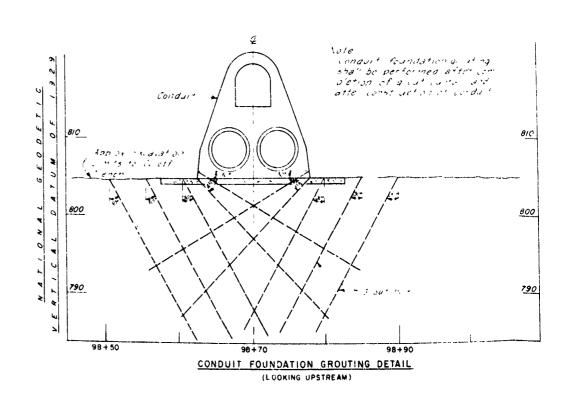


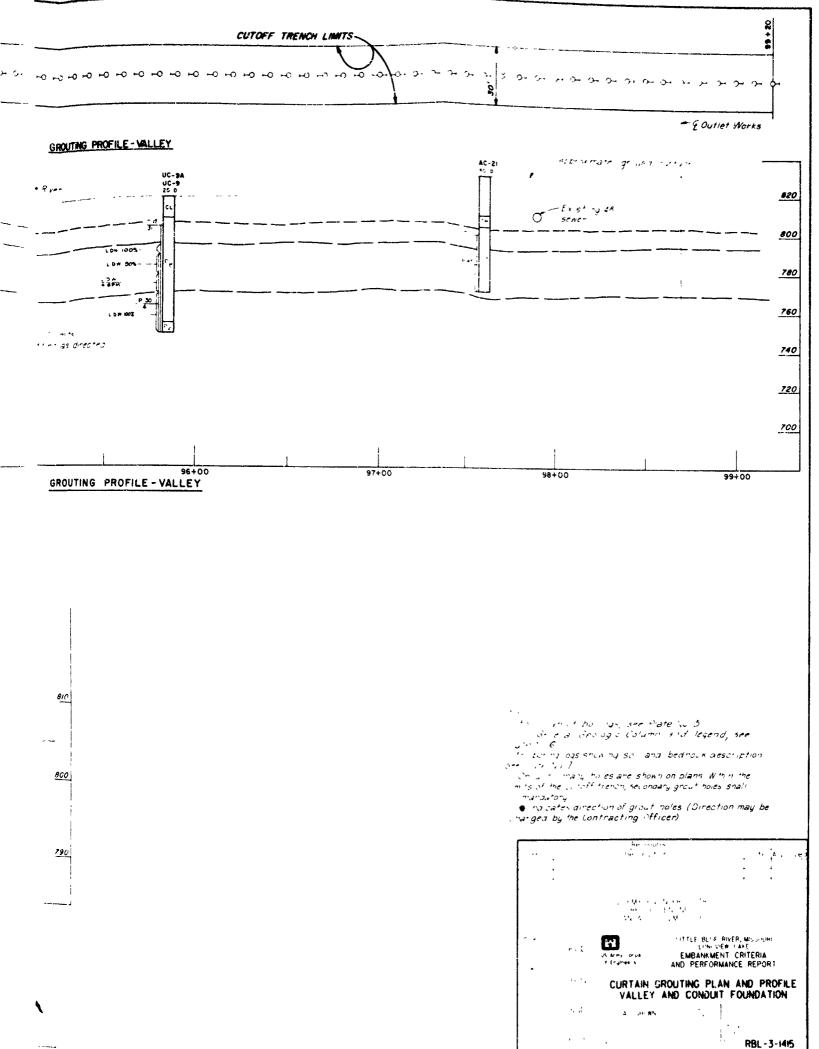


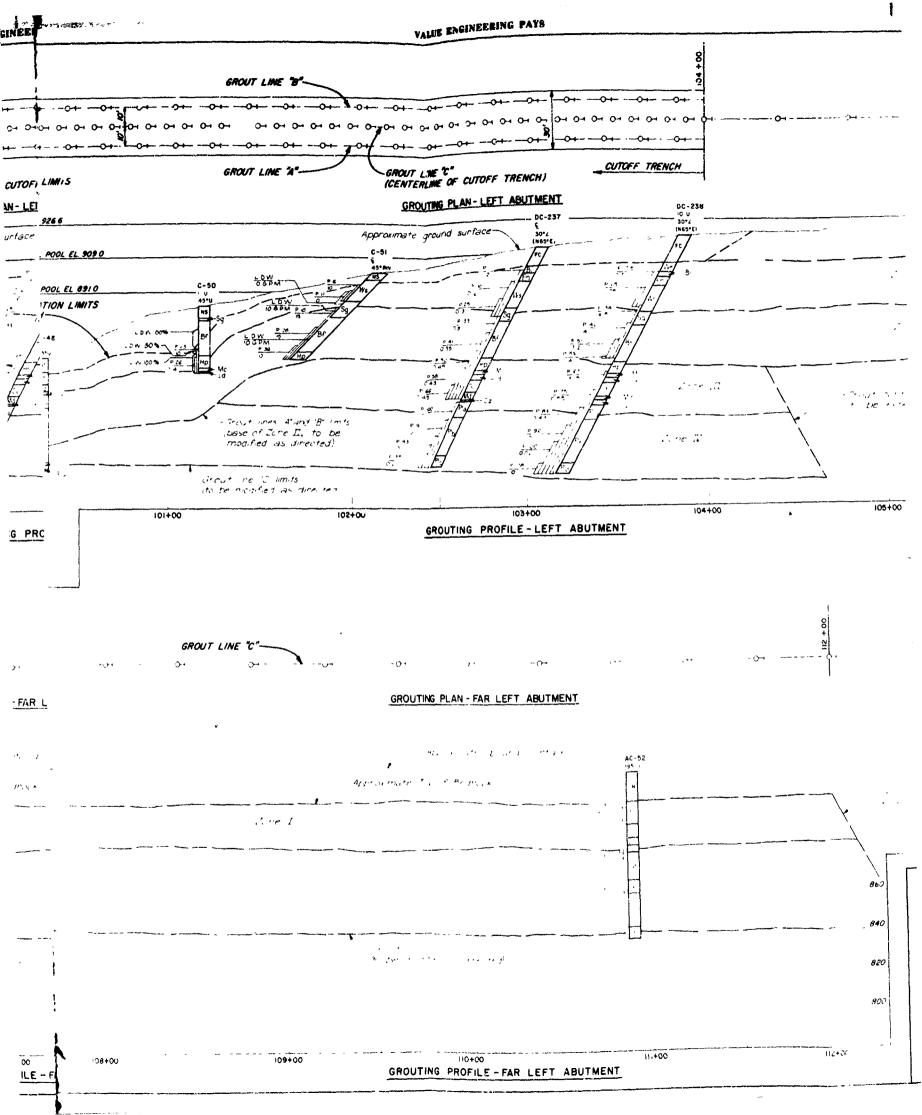

Votes

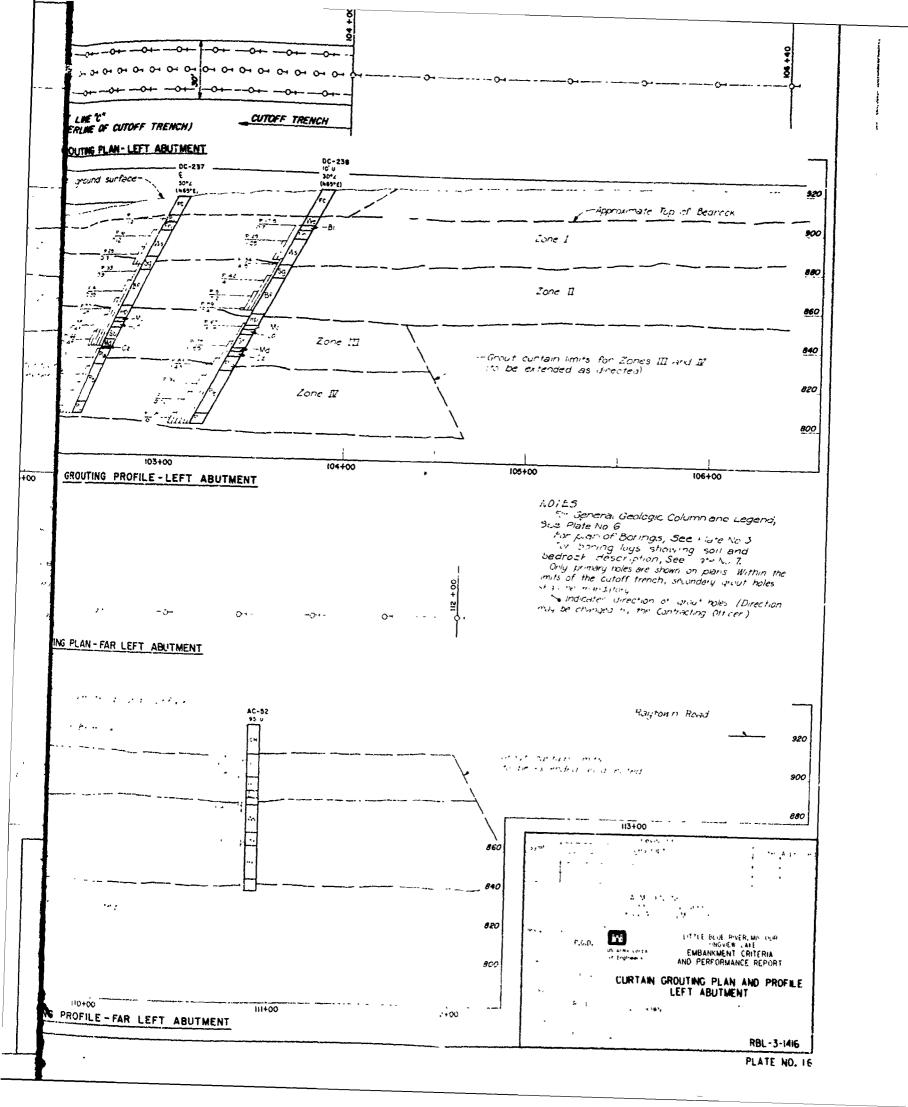

Add to now excised on mor required in the constraint of Sutiet works sto 52,400, letters, the single flow material action of the material action of side material removed the polytopa material removed the polytopa will additional motives.

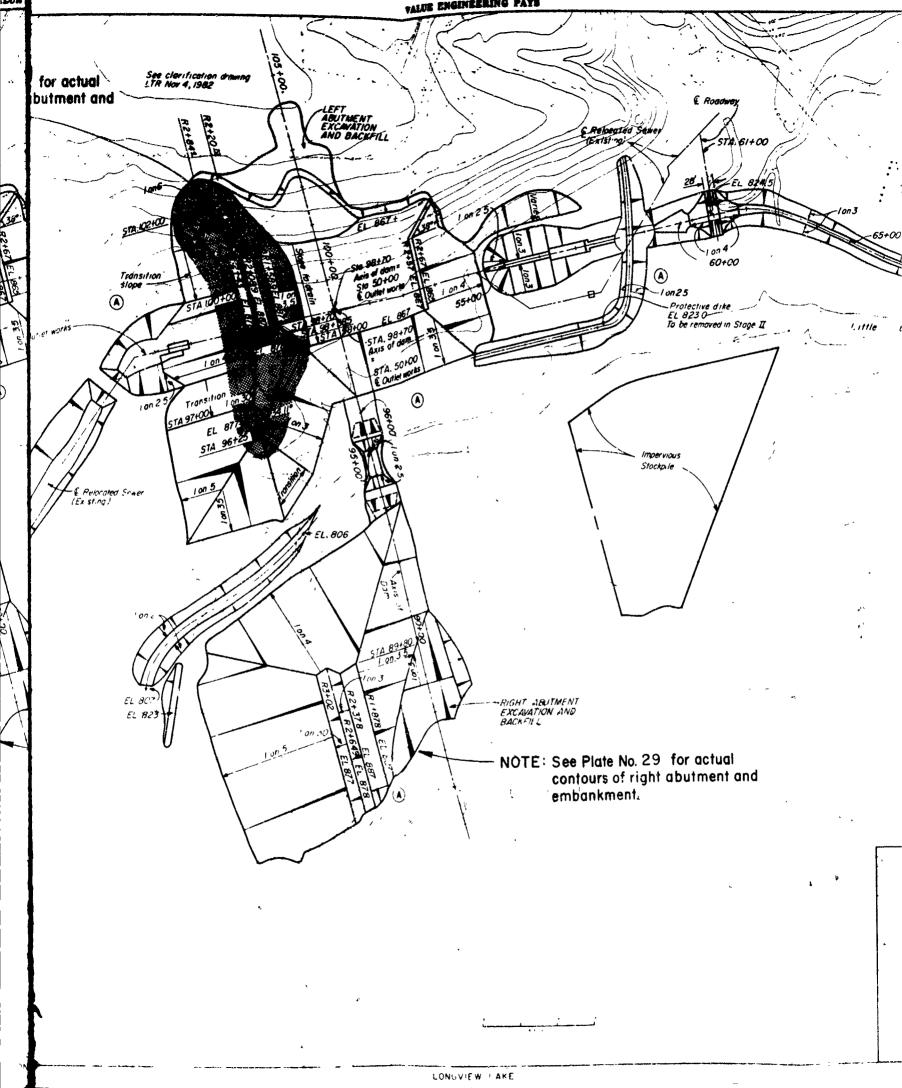

tacks to an eating and grubbing see so

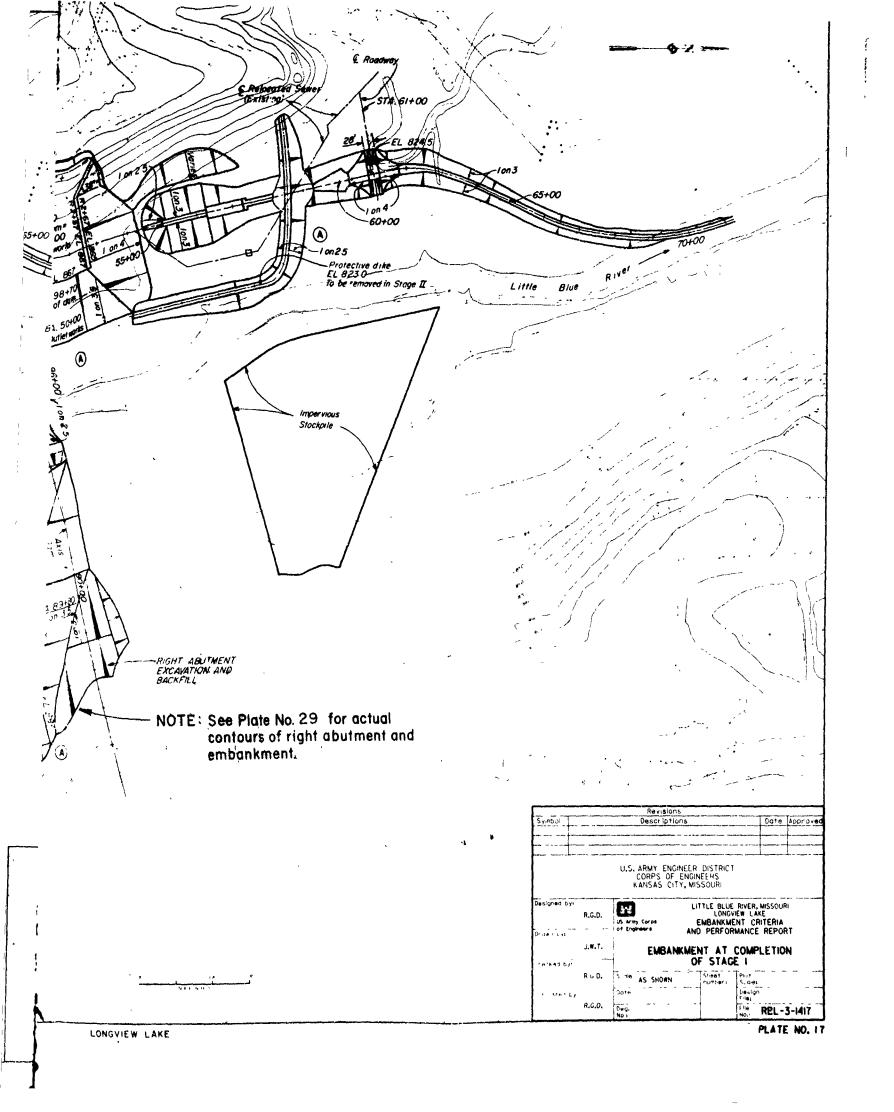


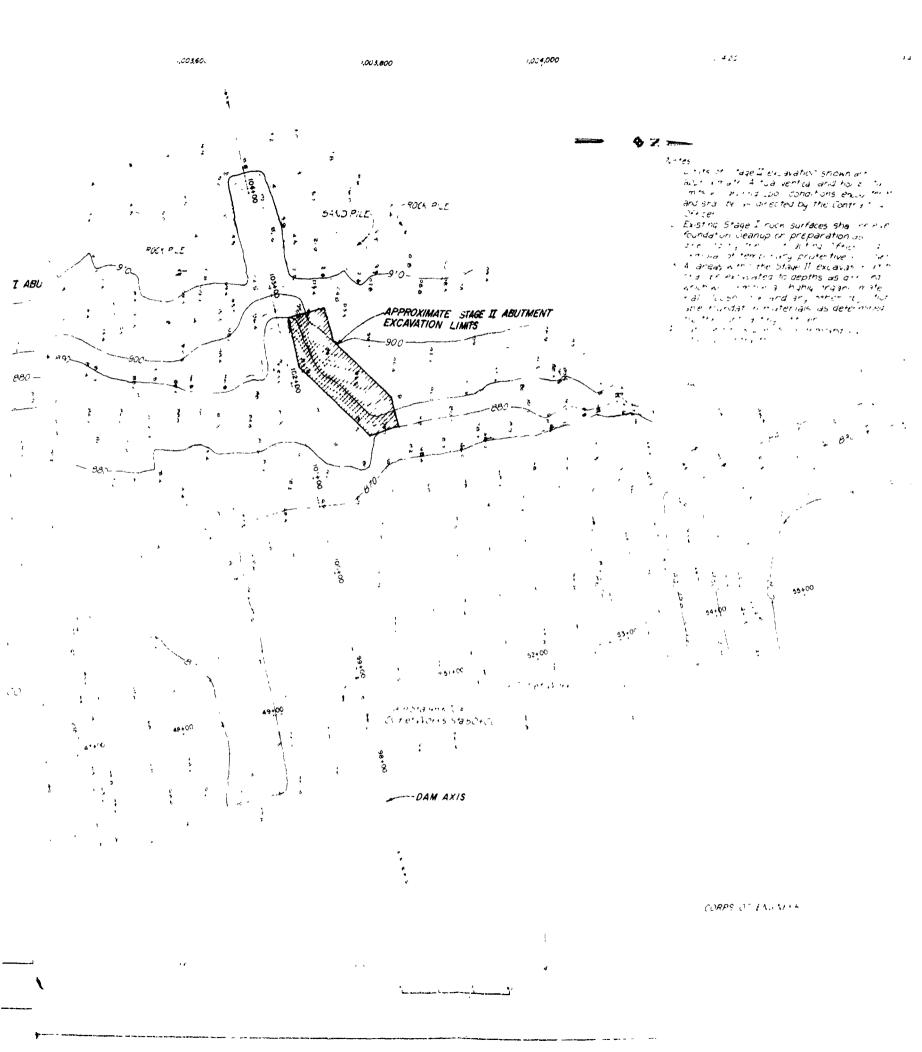

69+30 TING PROFILE - RIGHT ABUTMENT

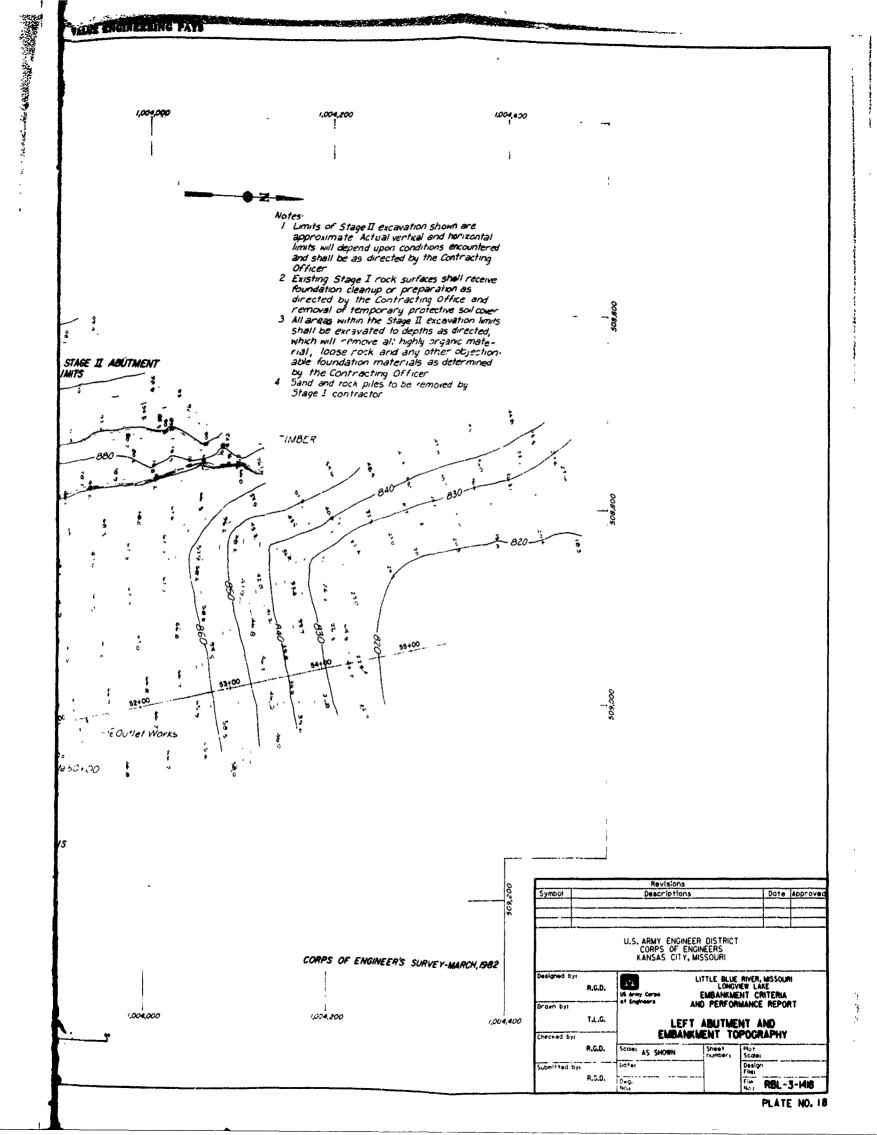

00

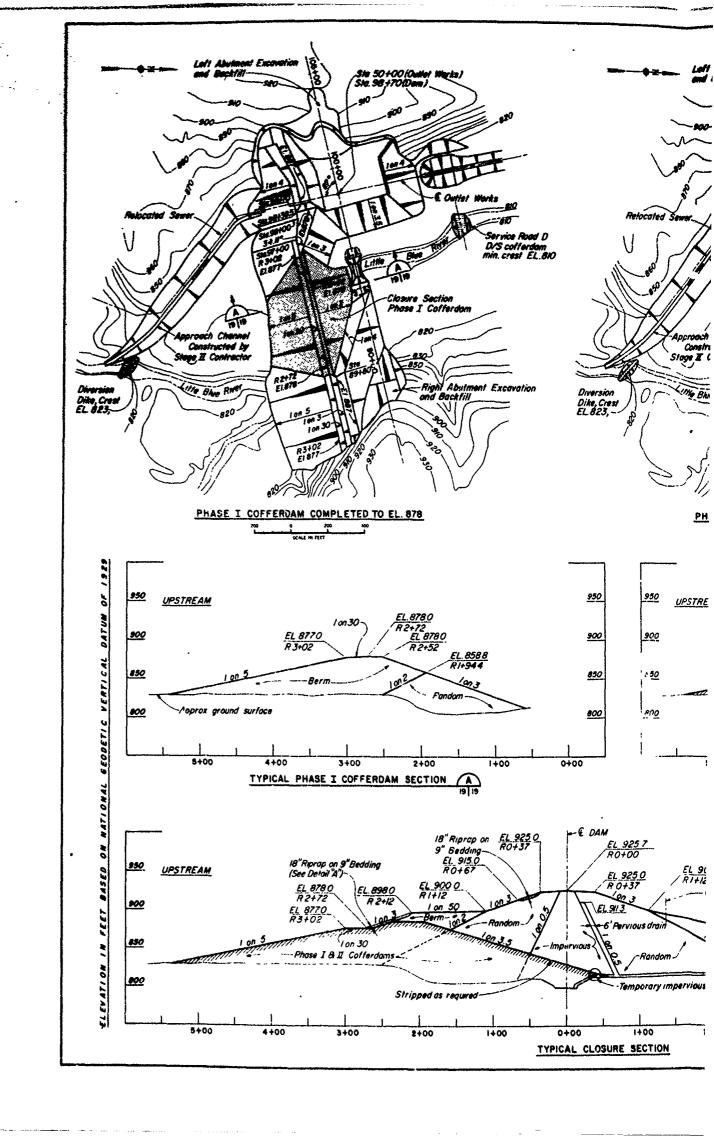

760

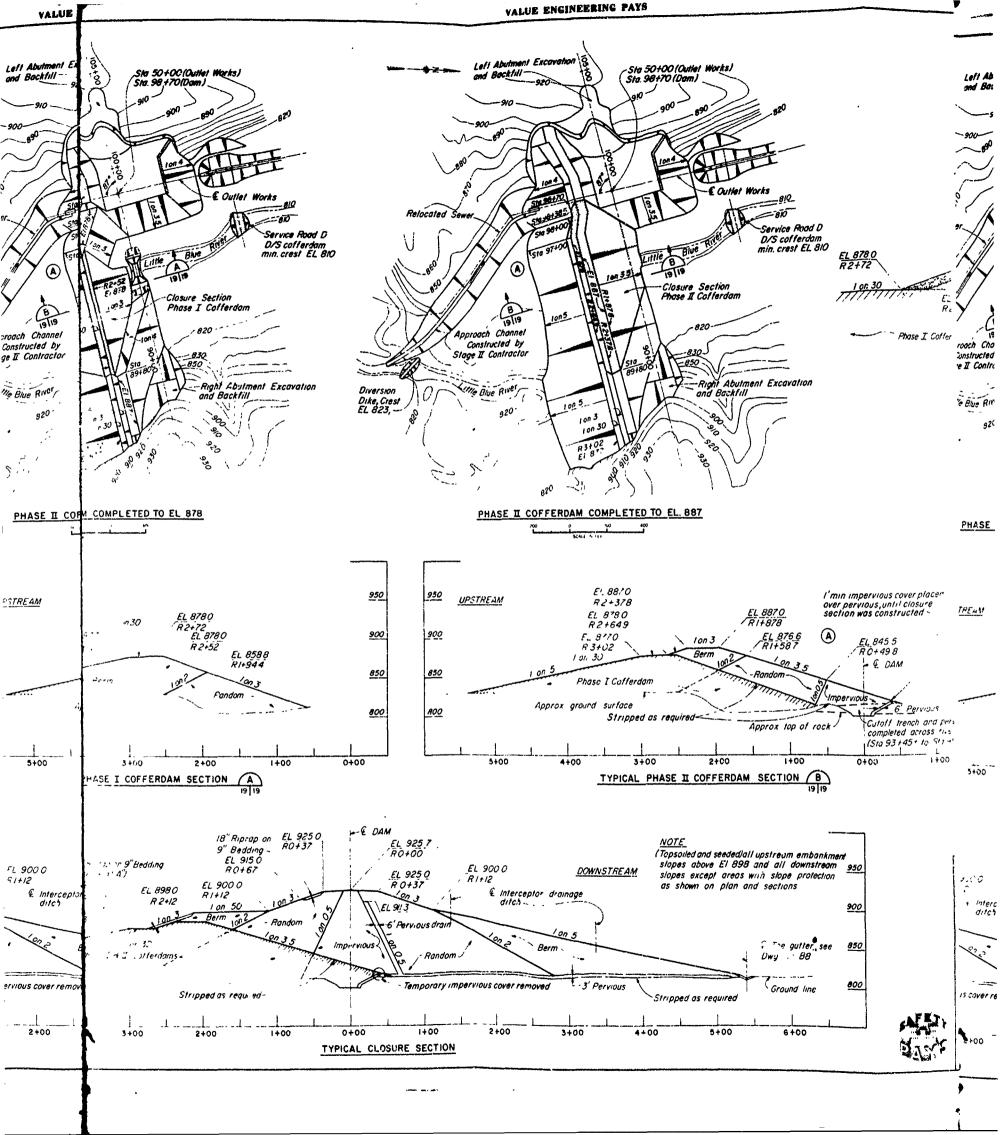


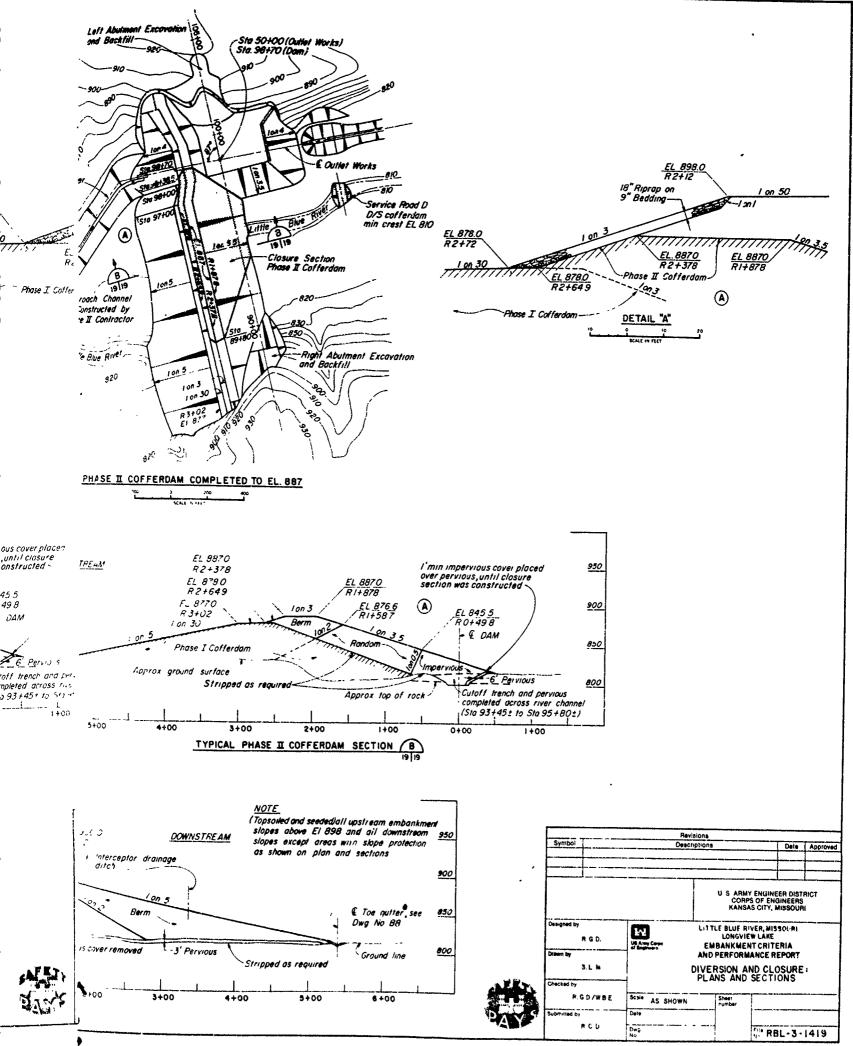

CONDUIT FOUNDATION GROUTING DETAIL
(LOOKING UPSTREAM)

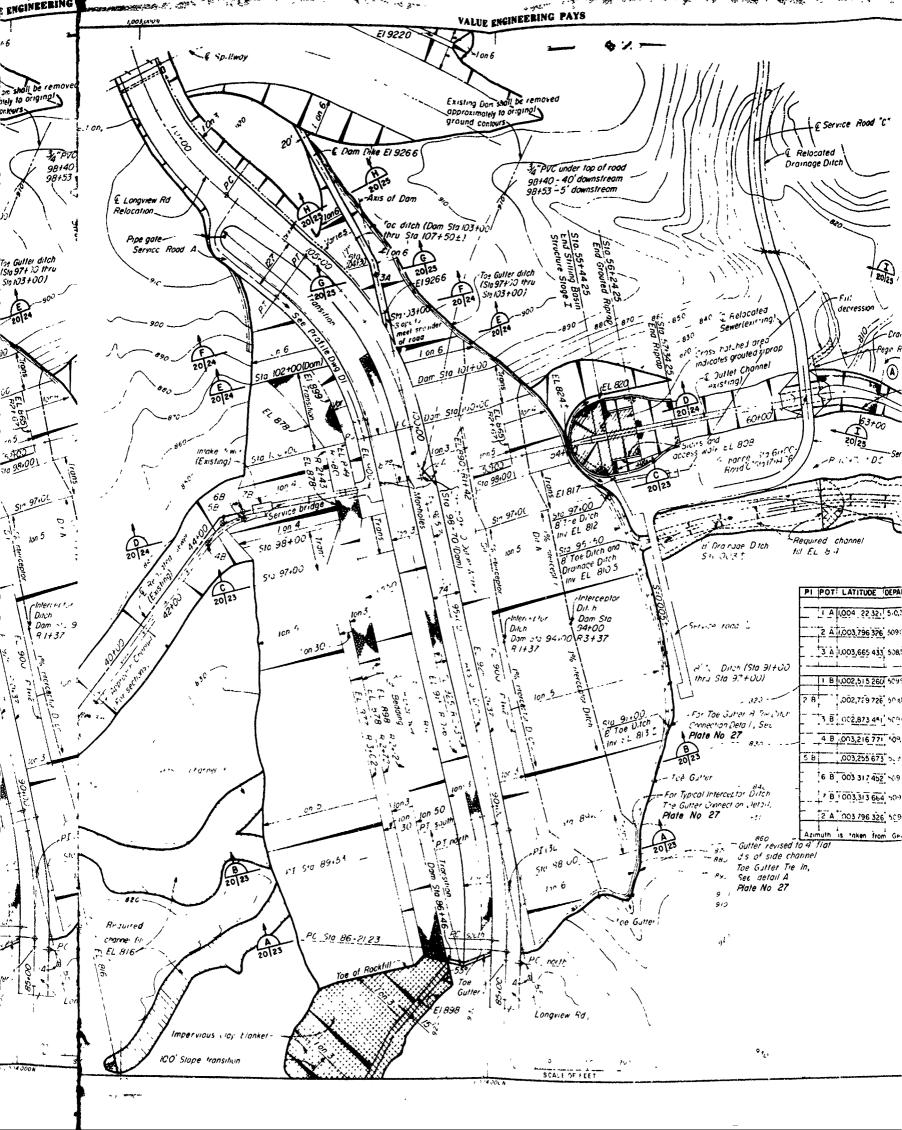


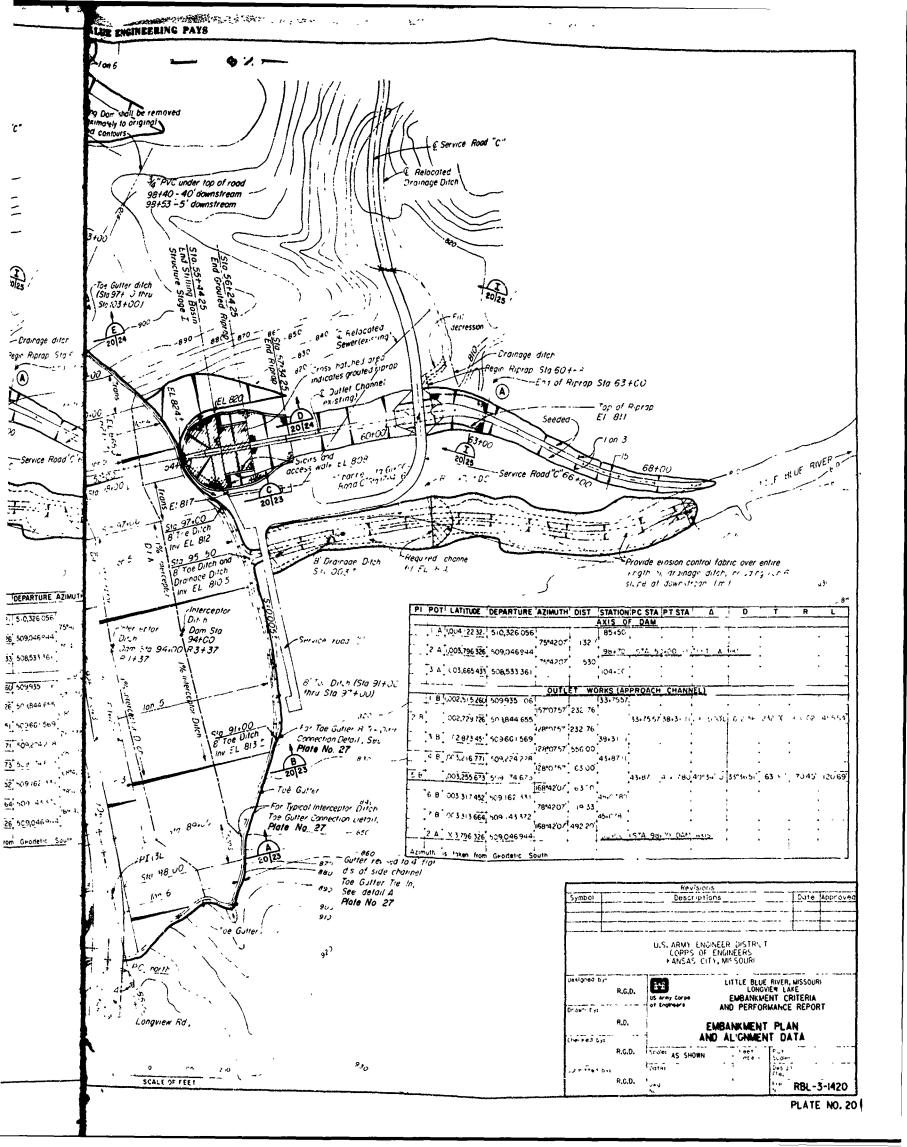


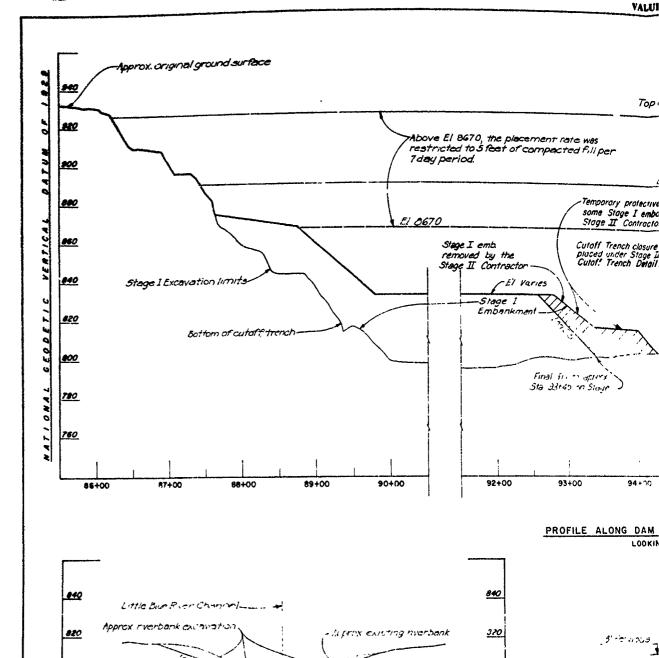


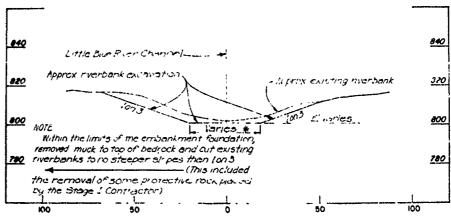


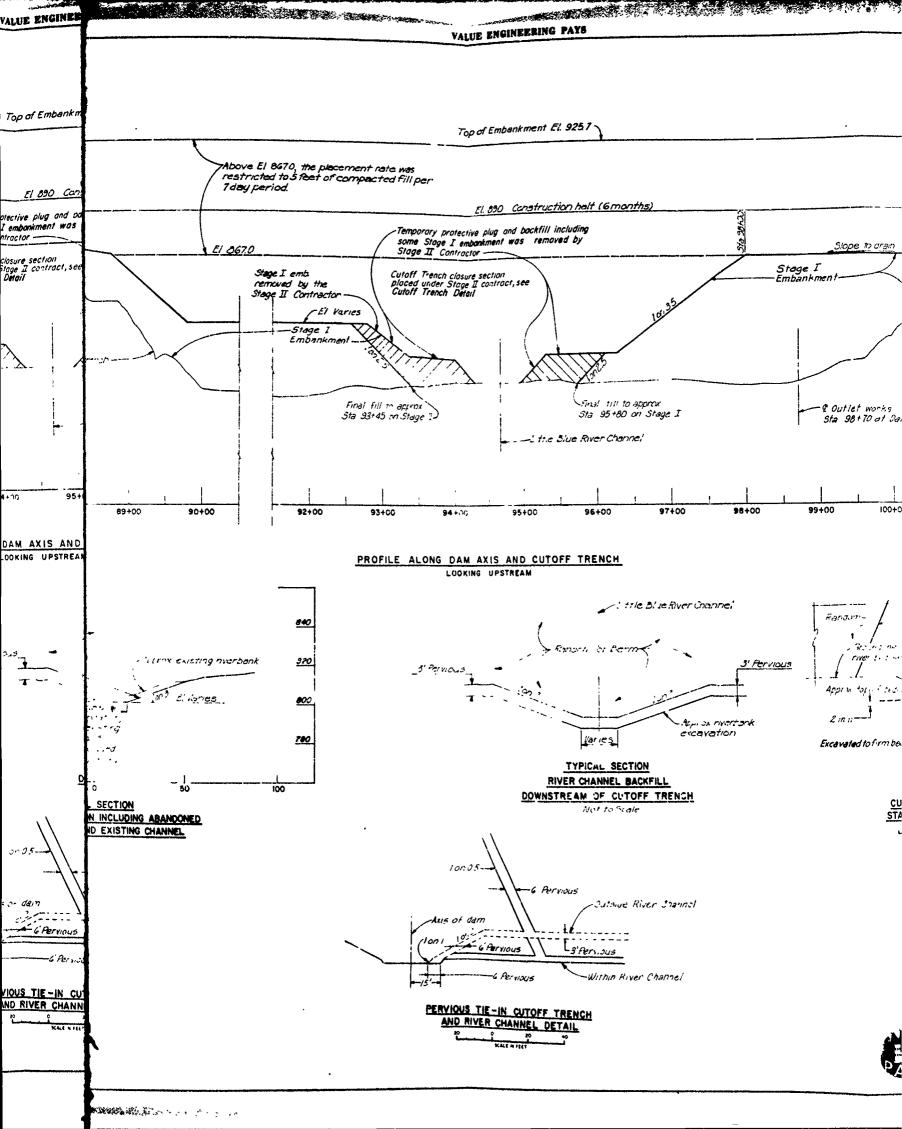


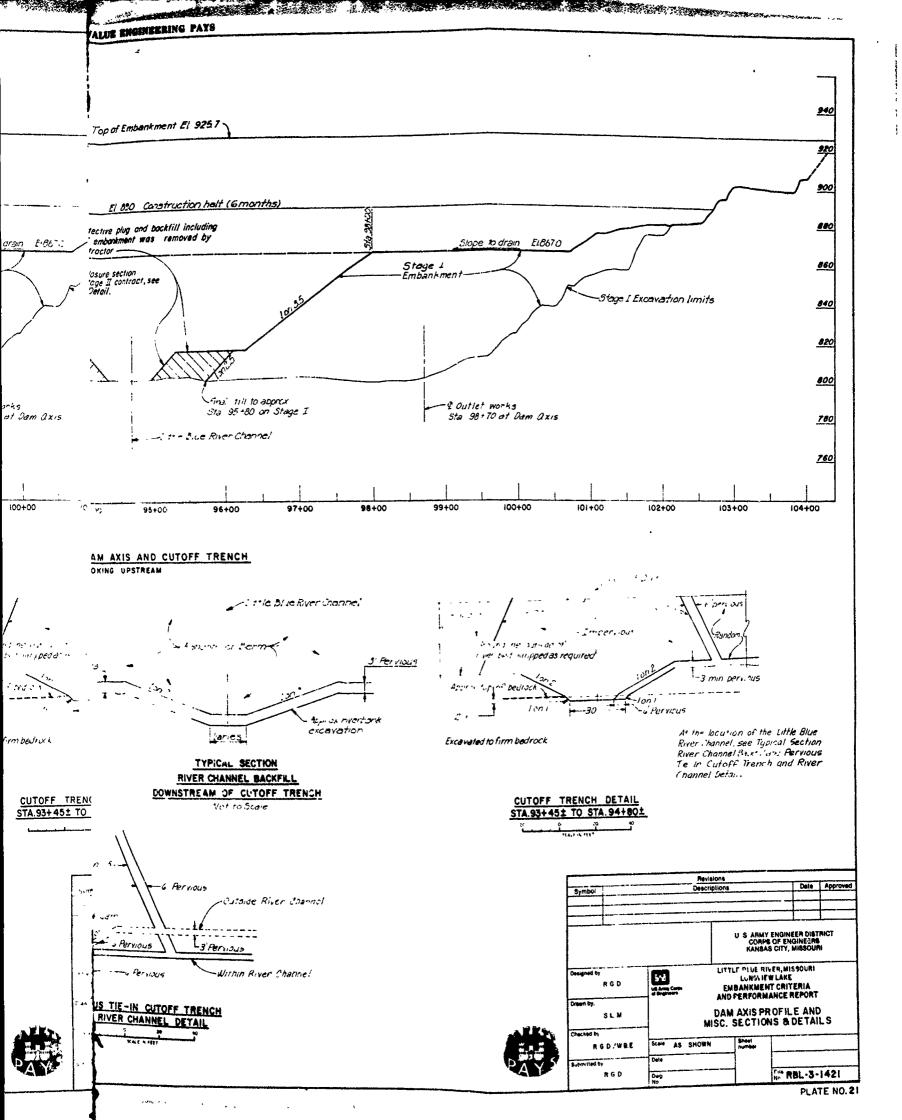


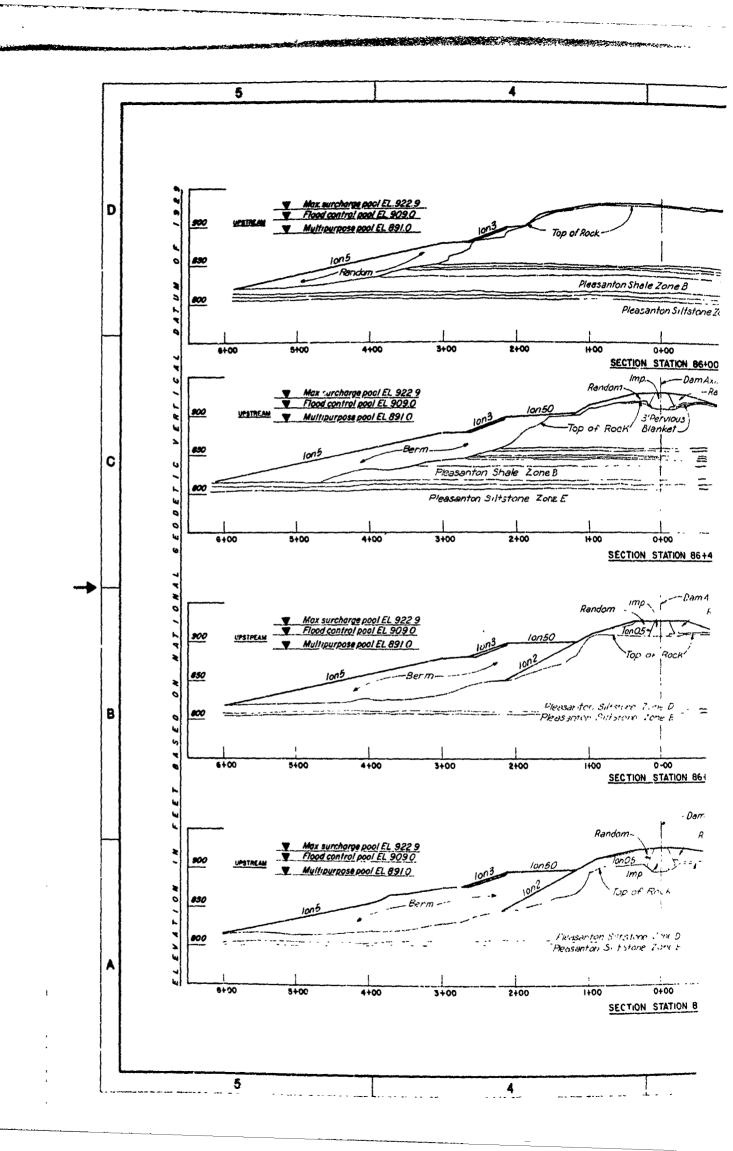


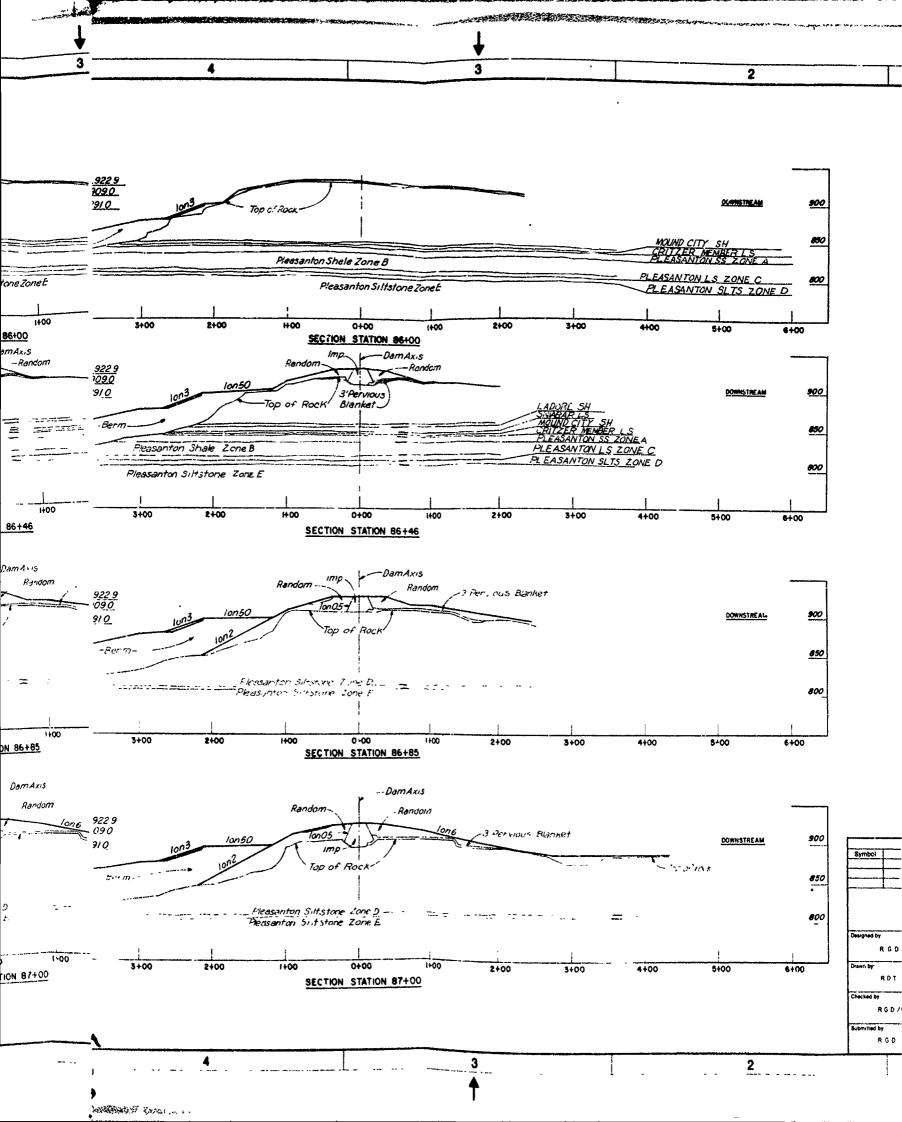


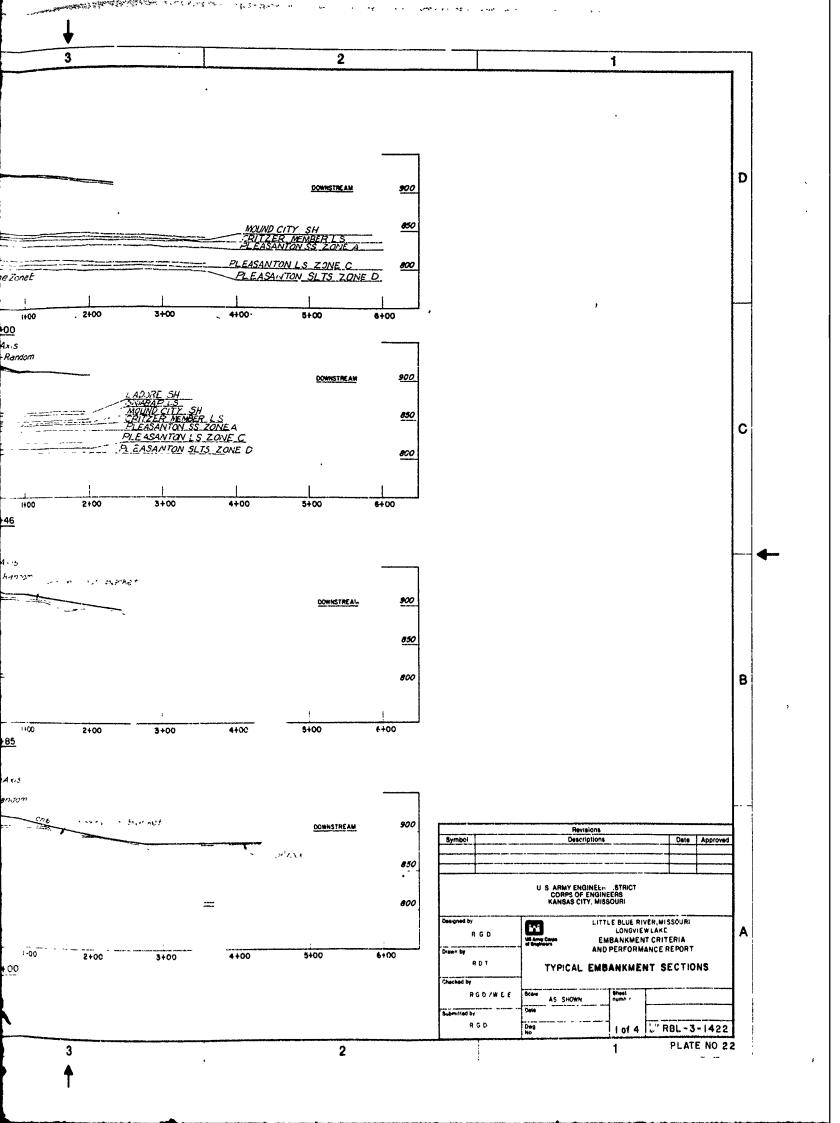


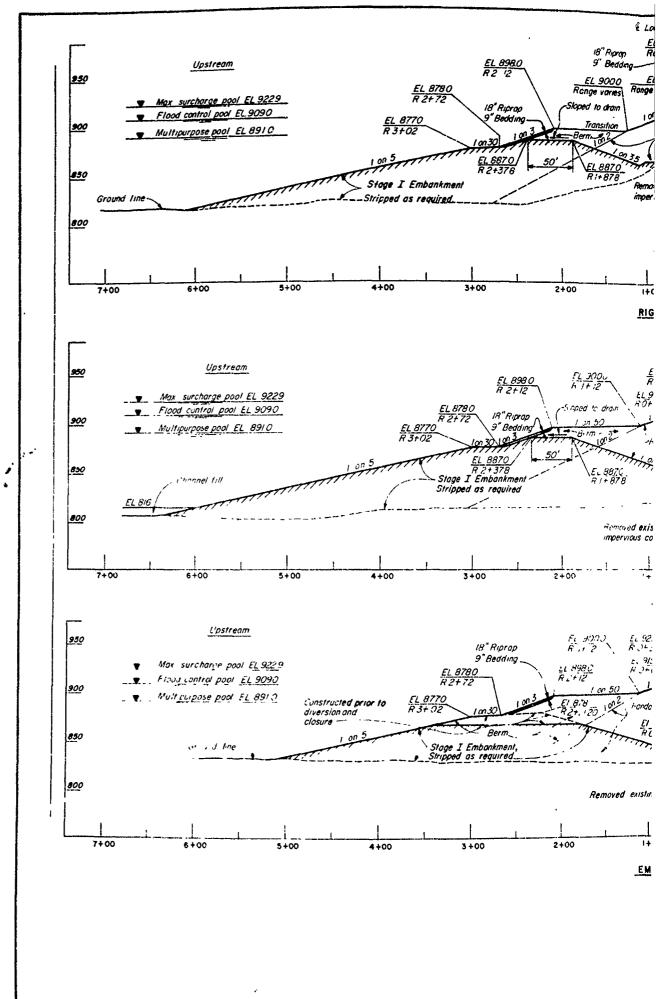


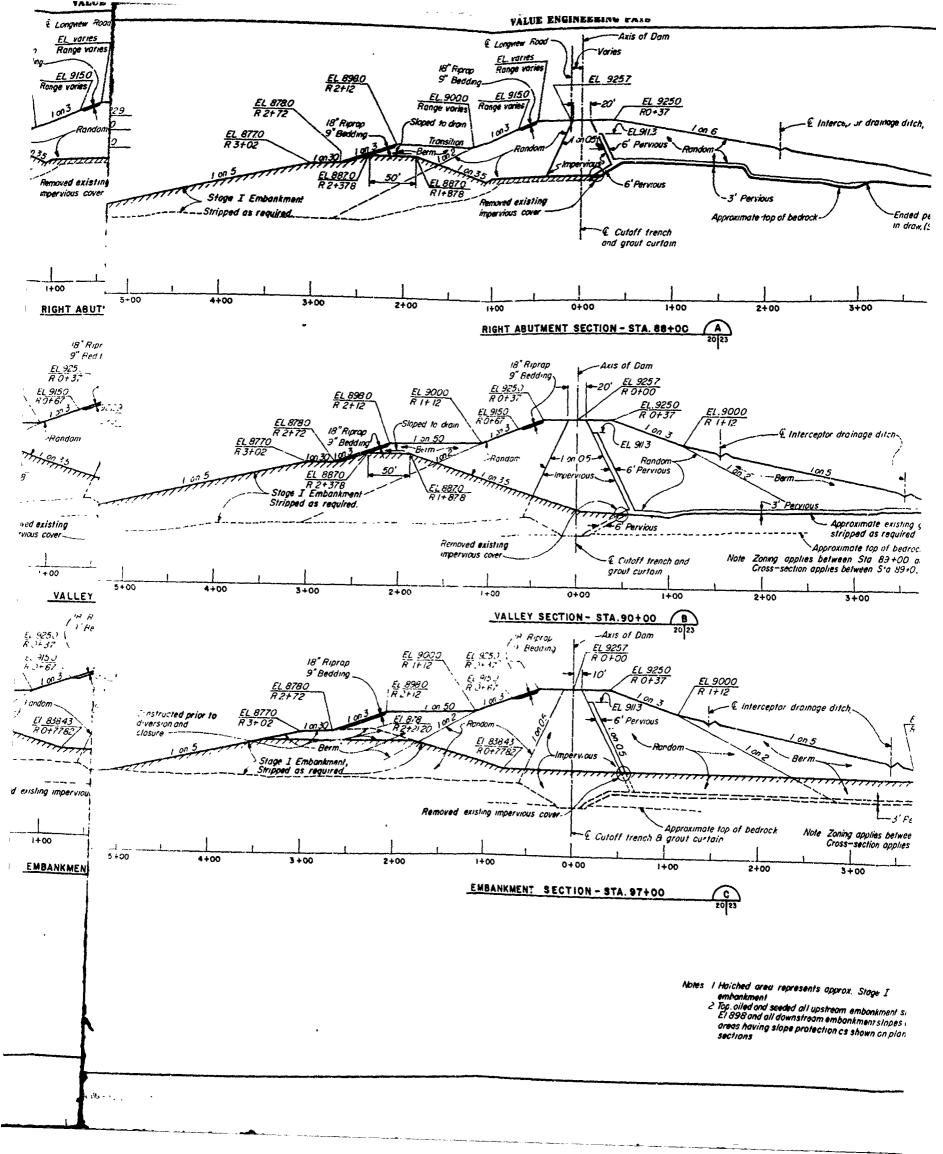


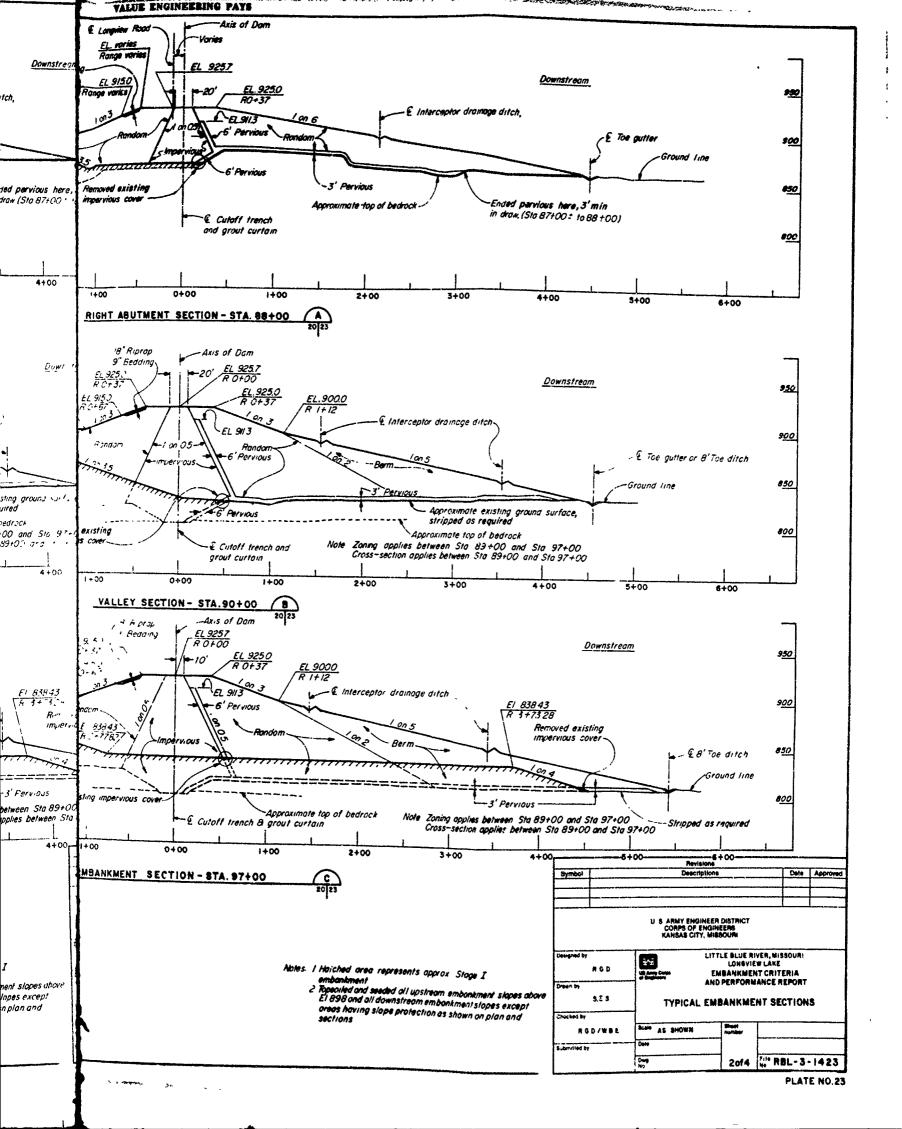


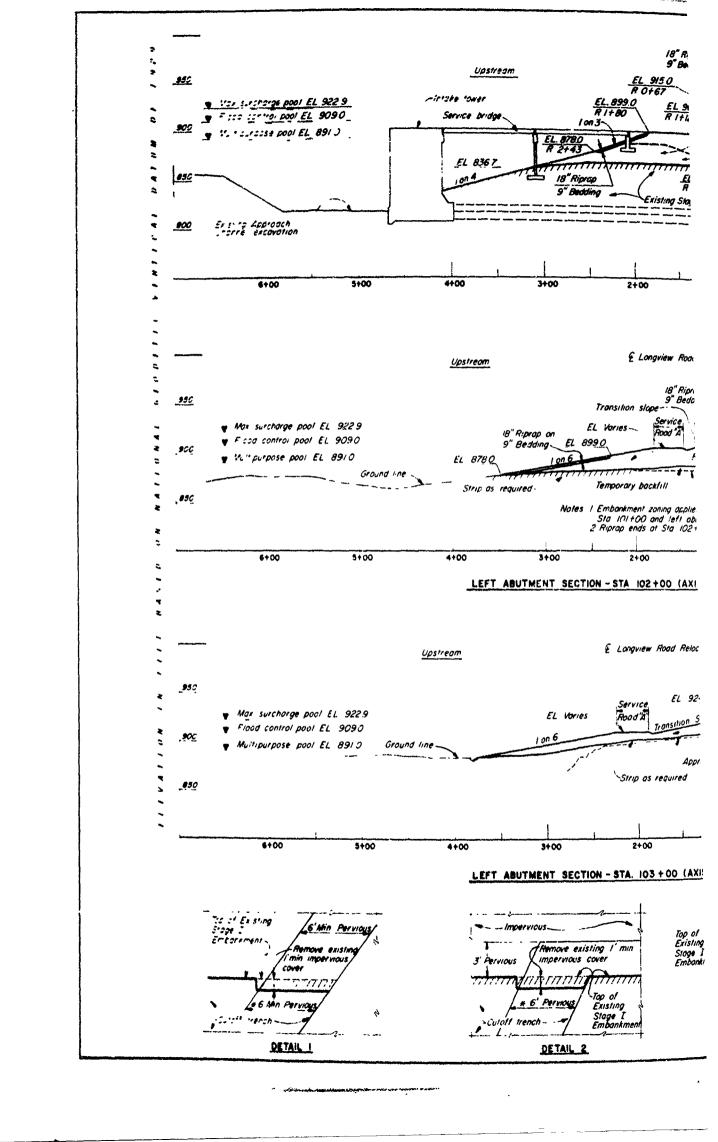

TYPICAL SECTION
RIVERBANK EXCAVATION INCLUDING ABANDONED RIVER CHANNEL AND EXISTING CHANNEL

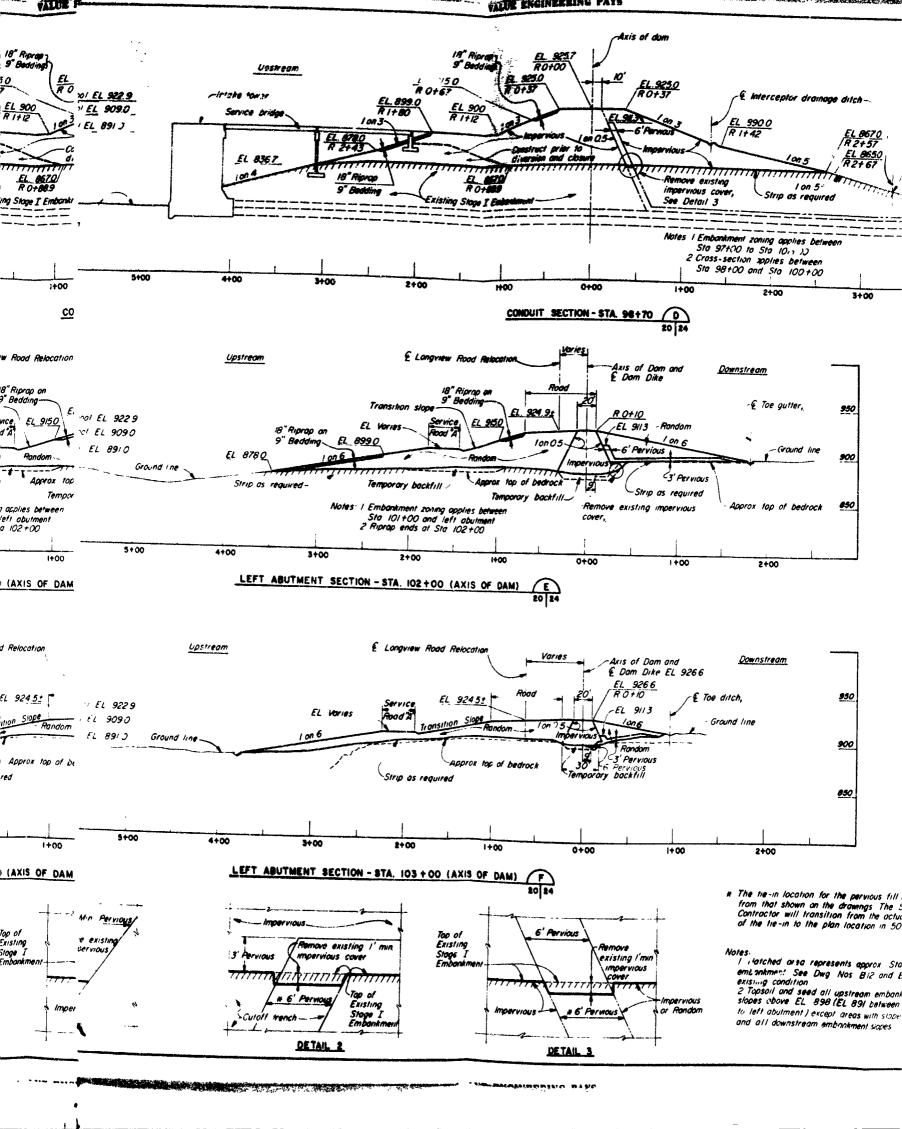

PERVIOUS AND R

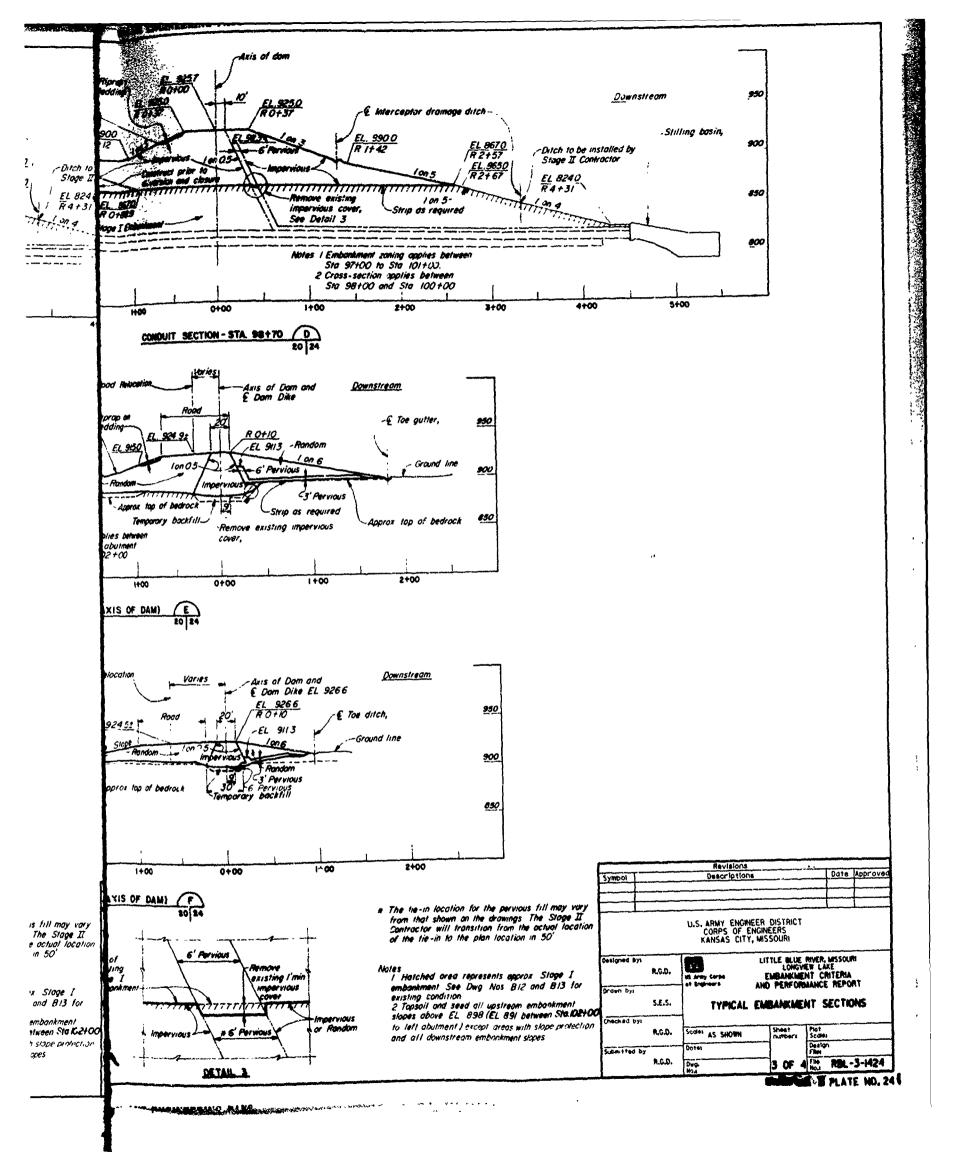


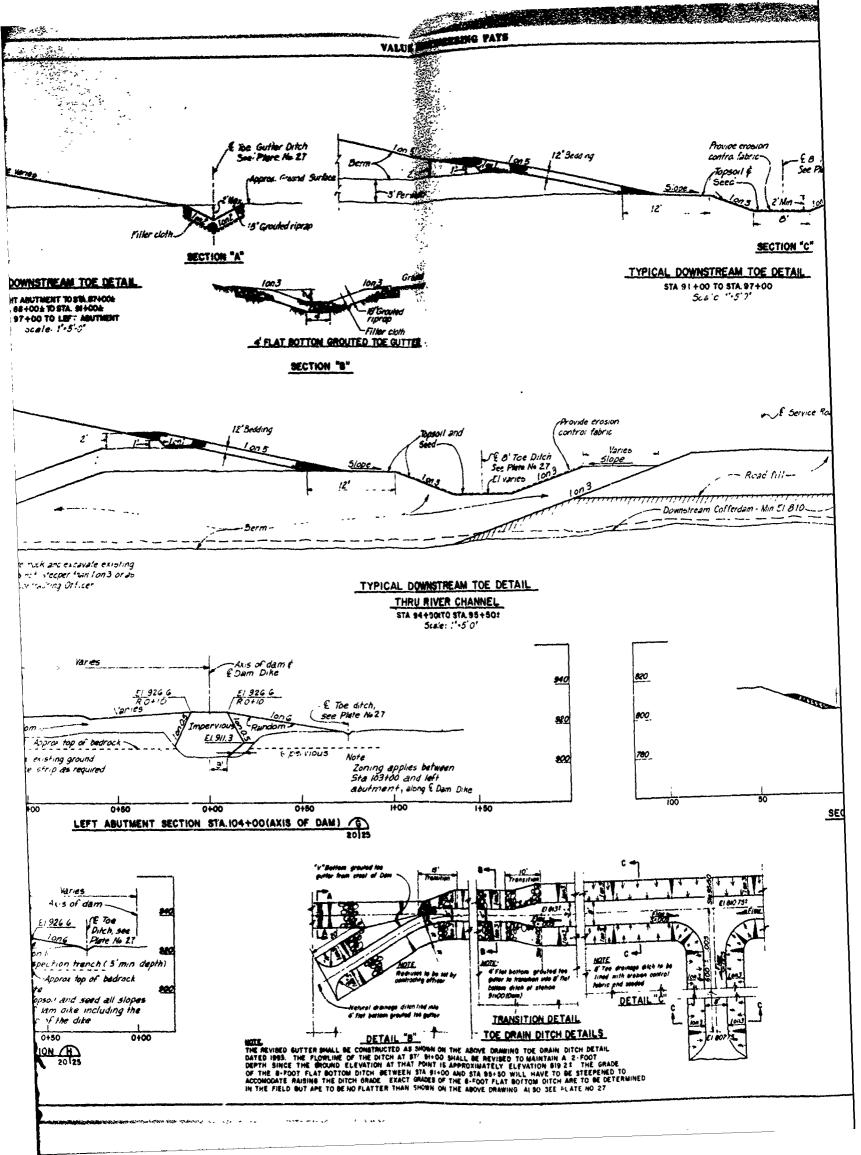


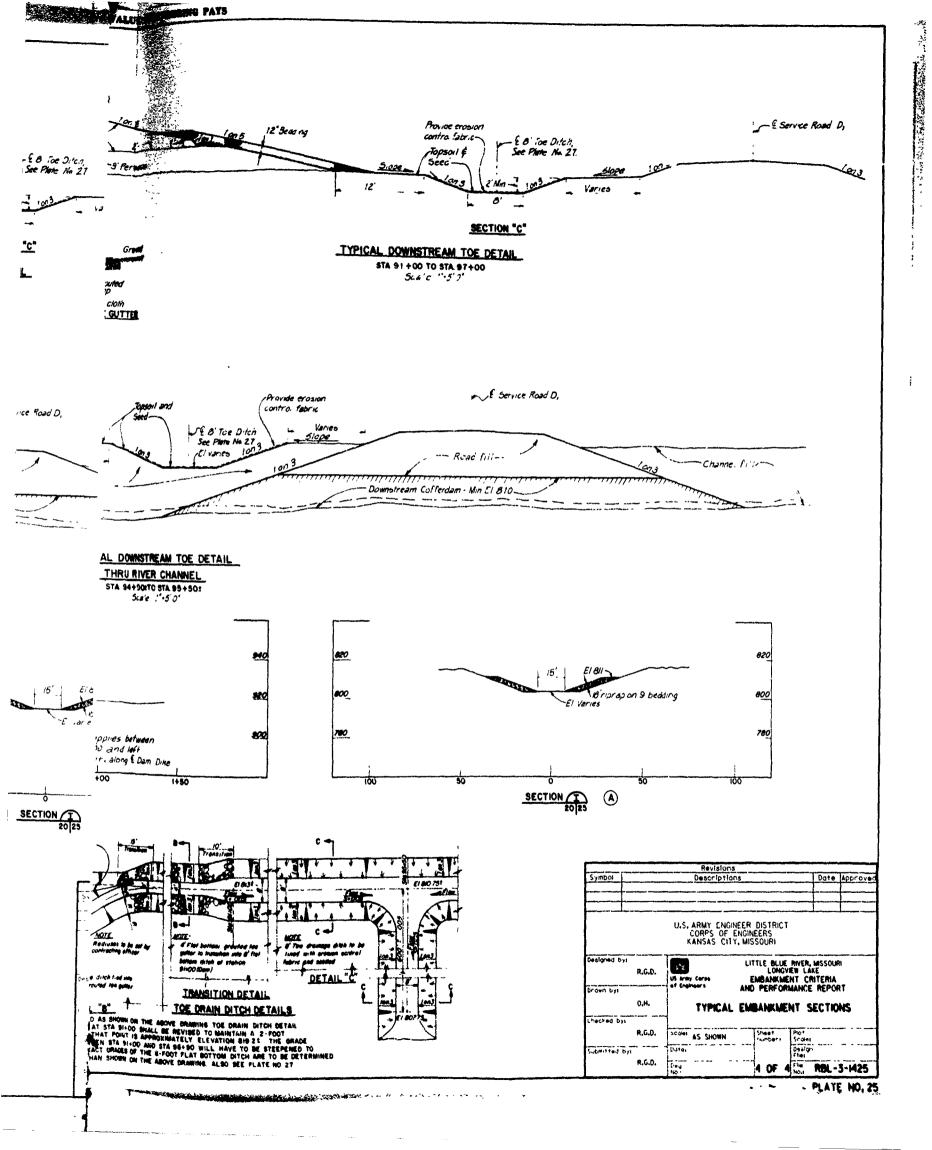


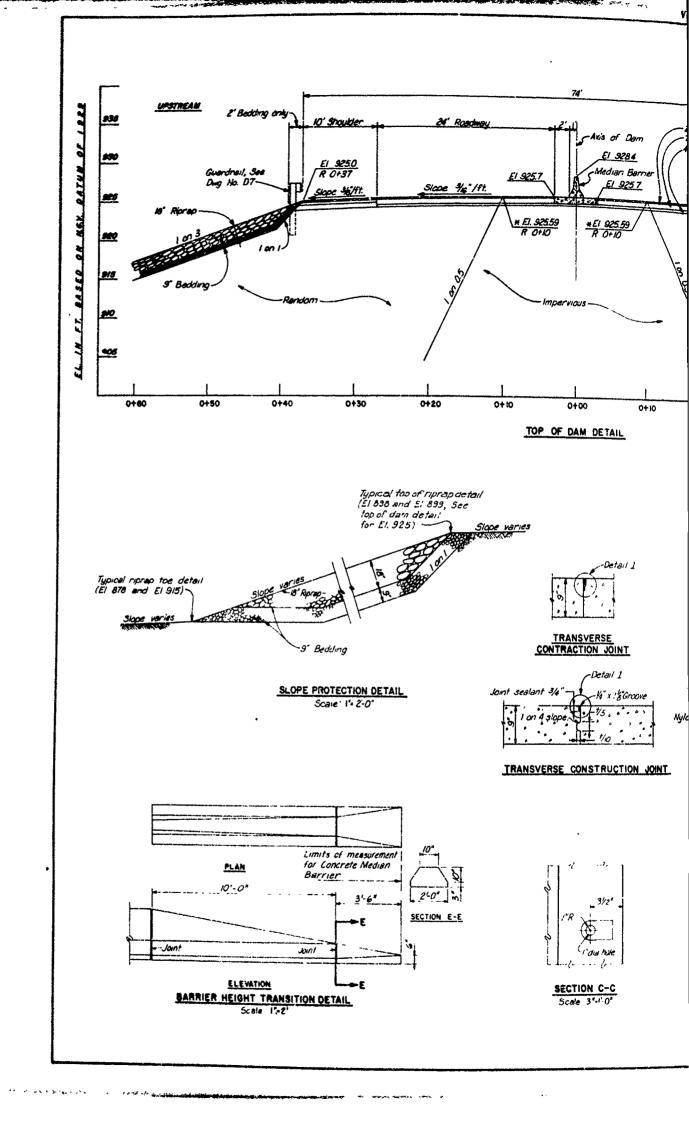


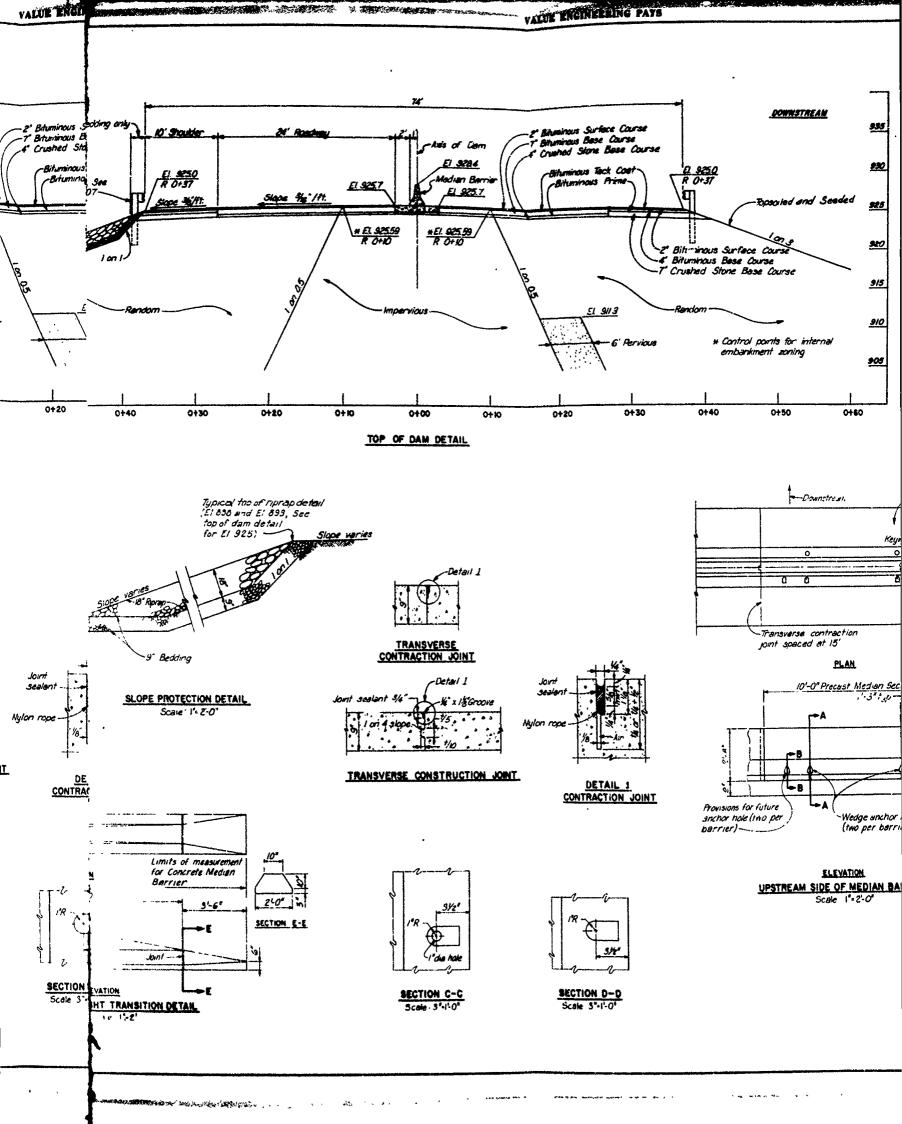


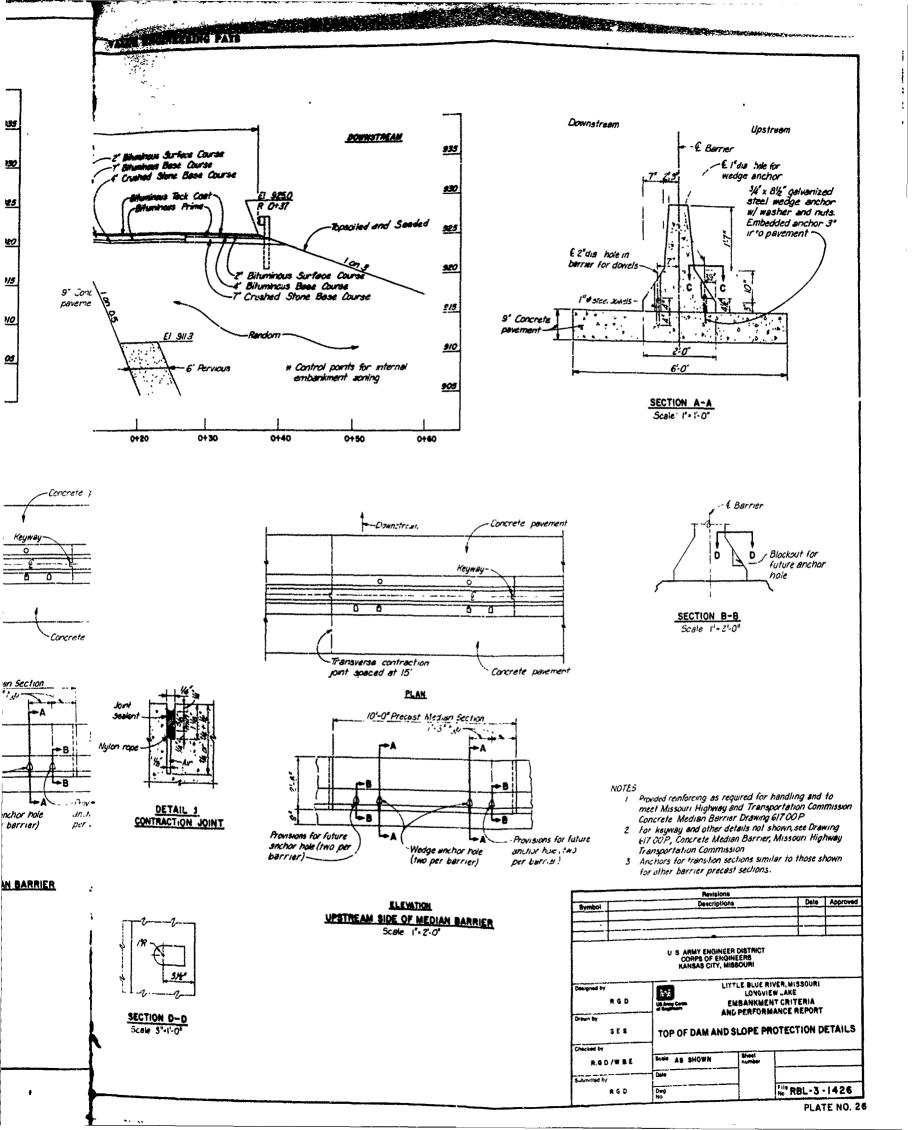


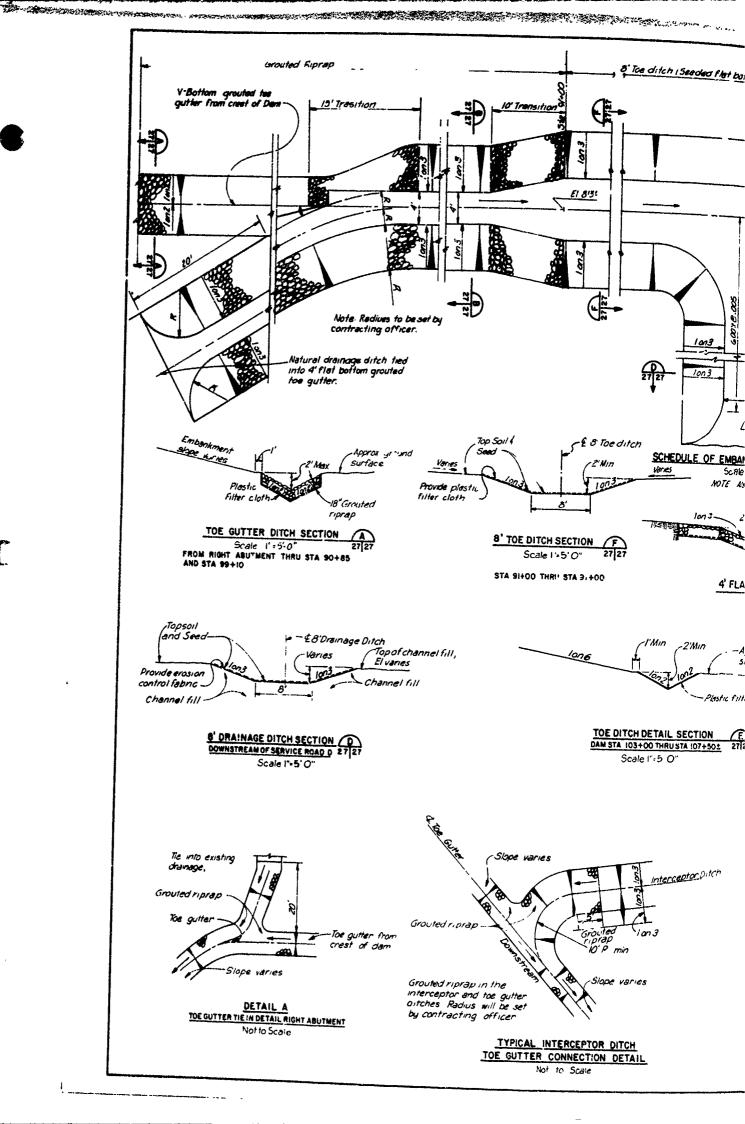


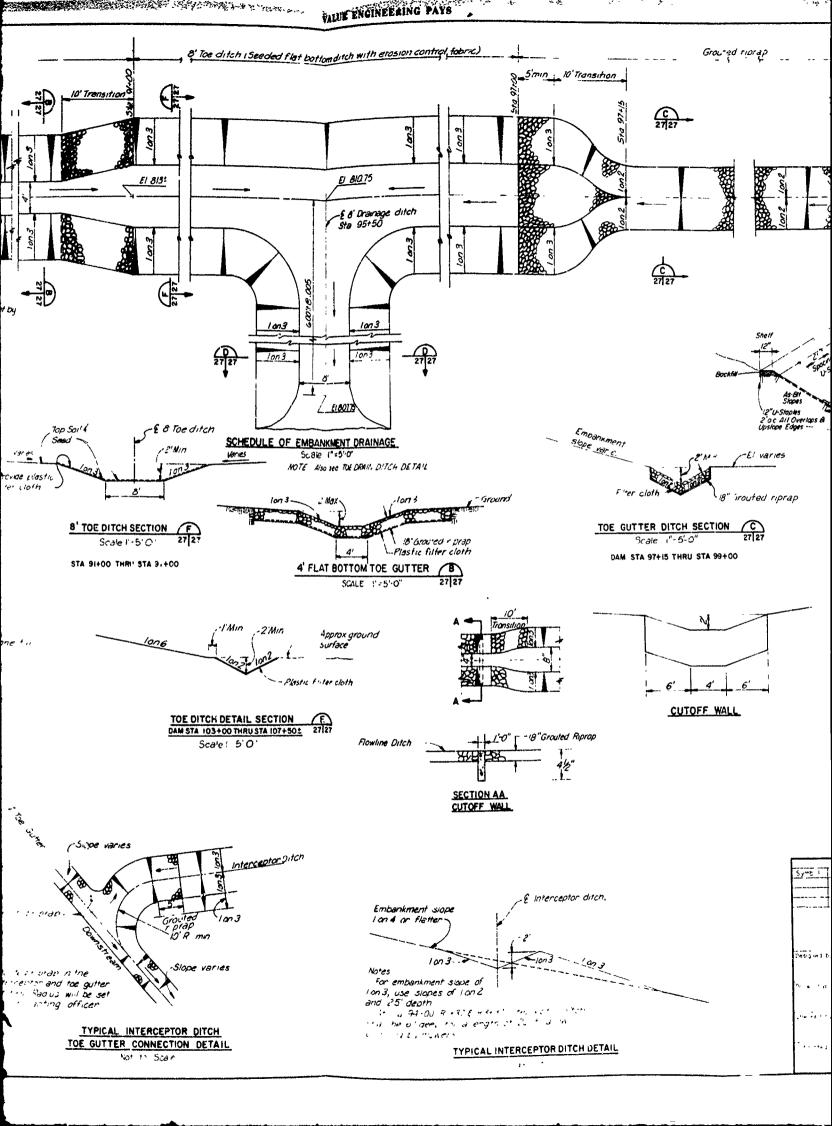


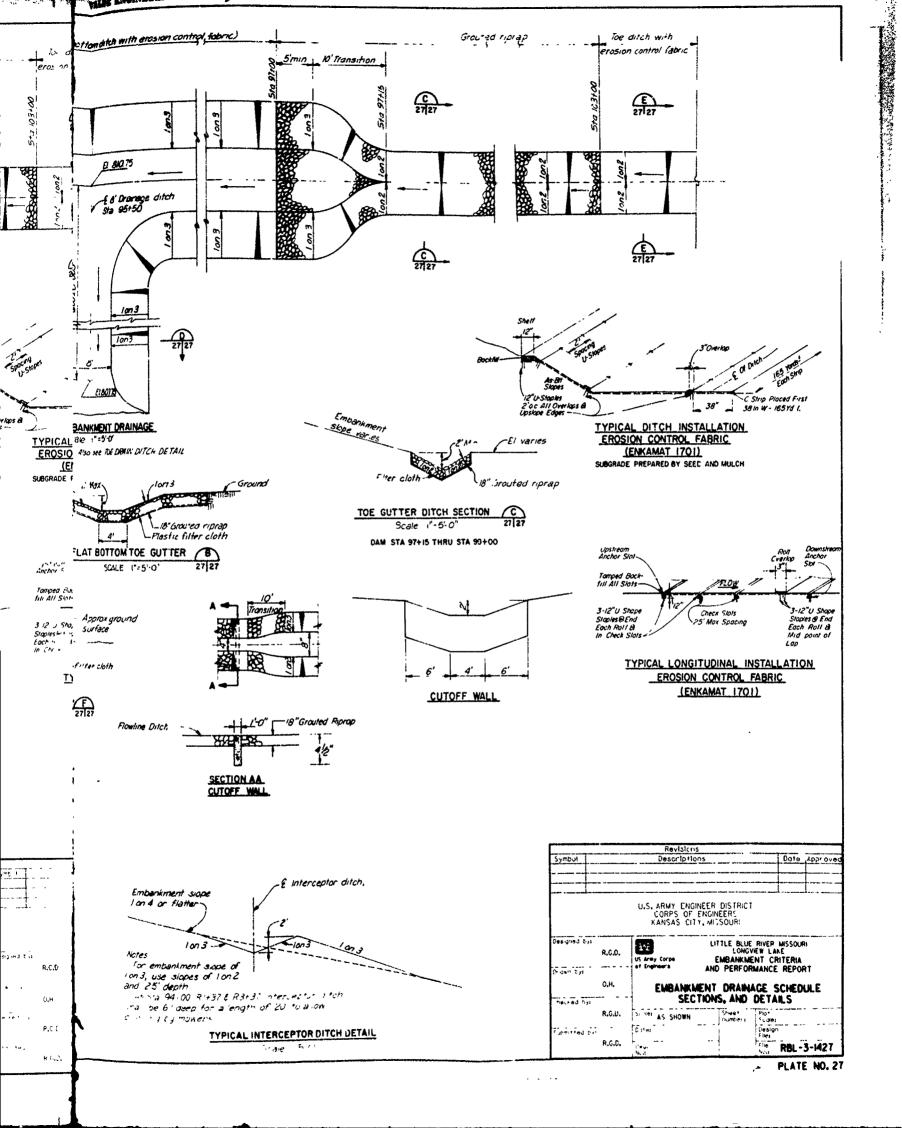


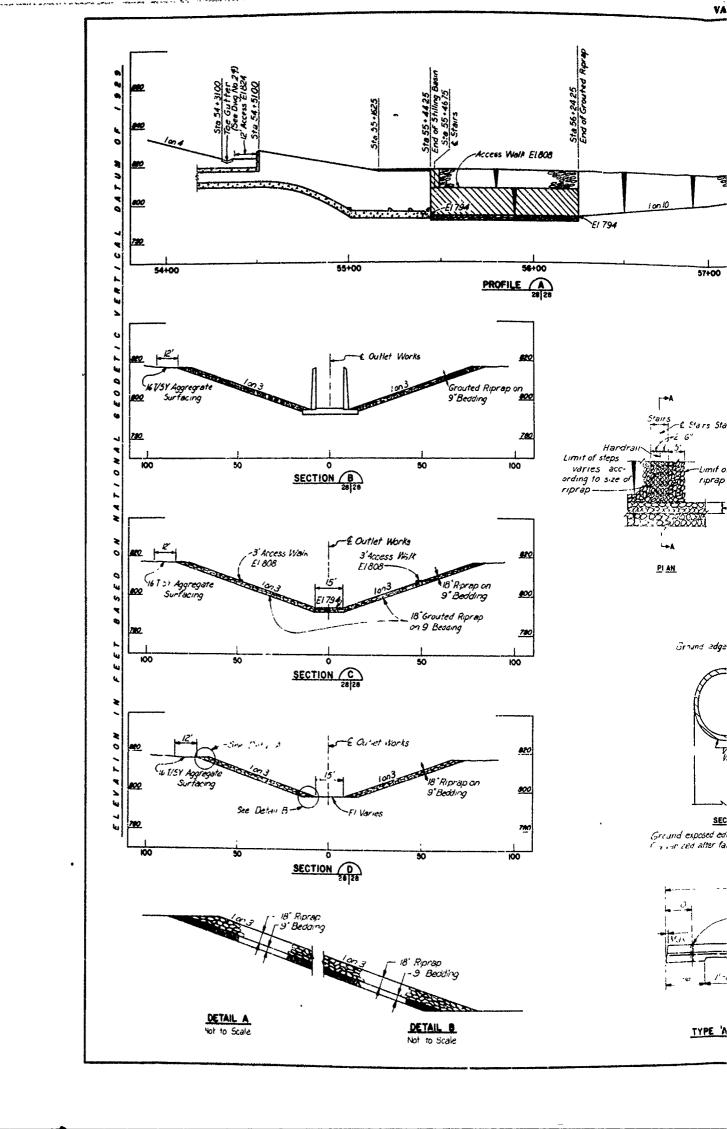

0

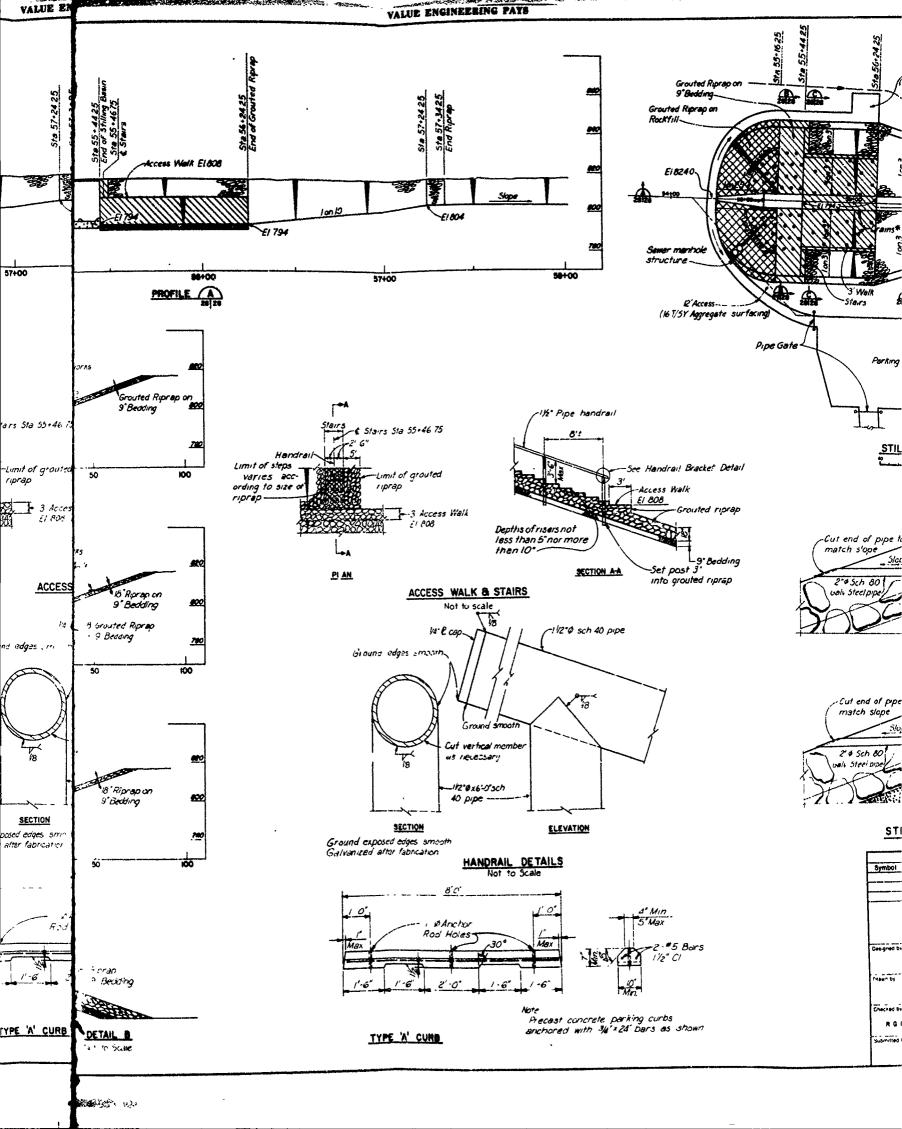

VALUE

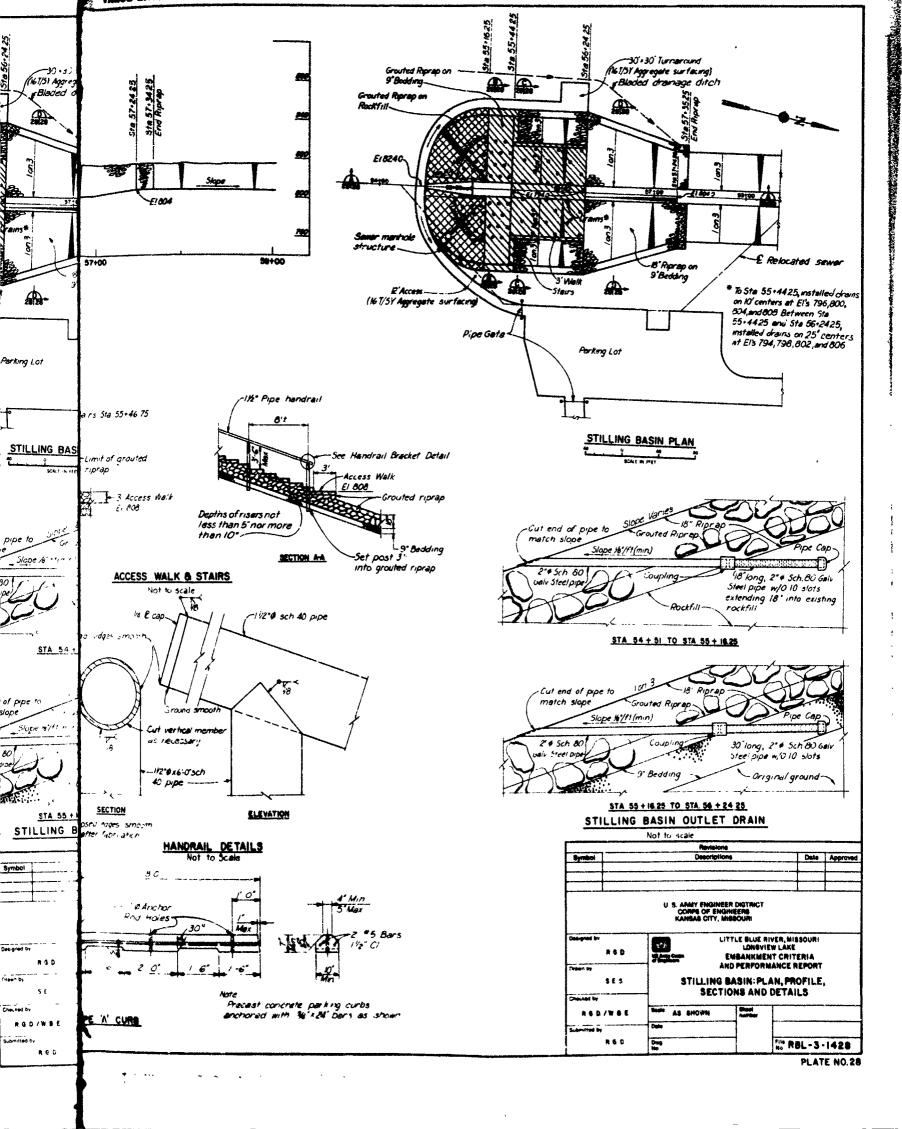


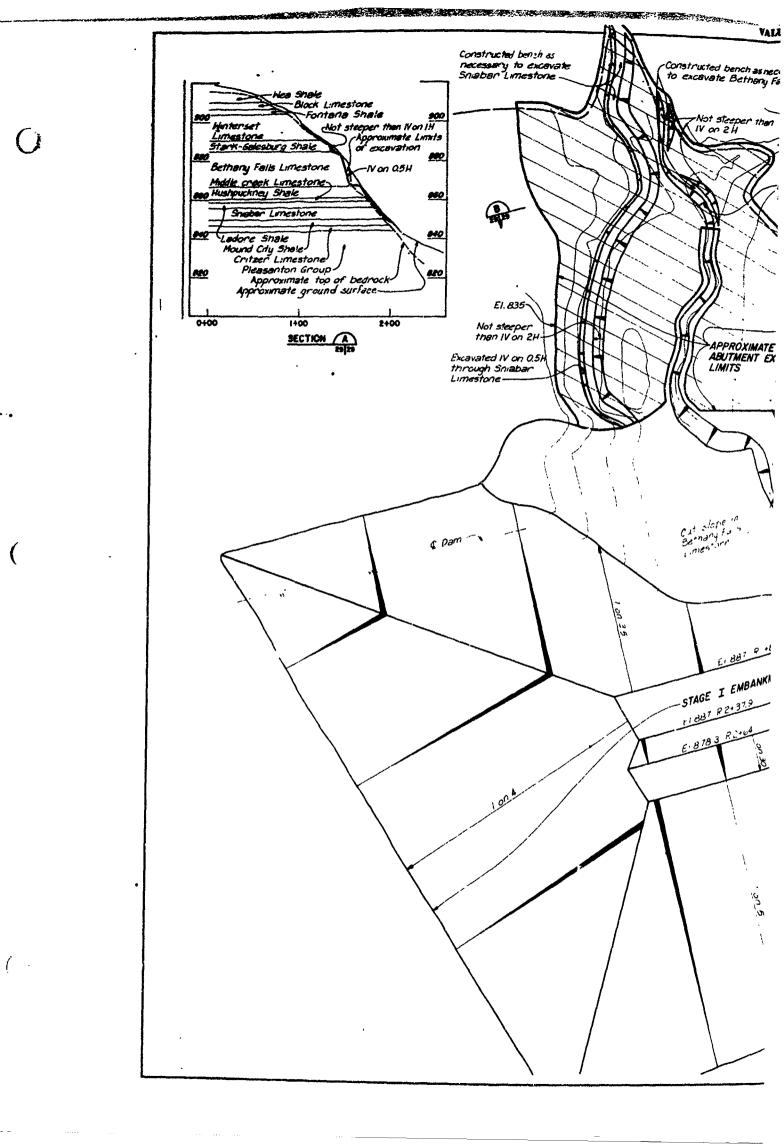


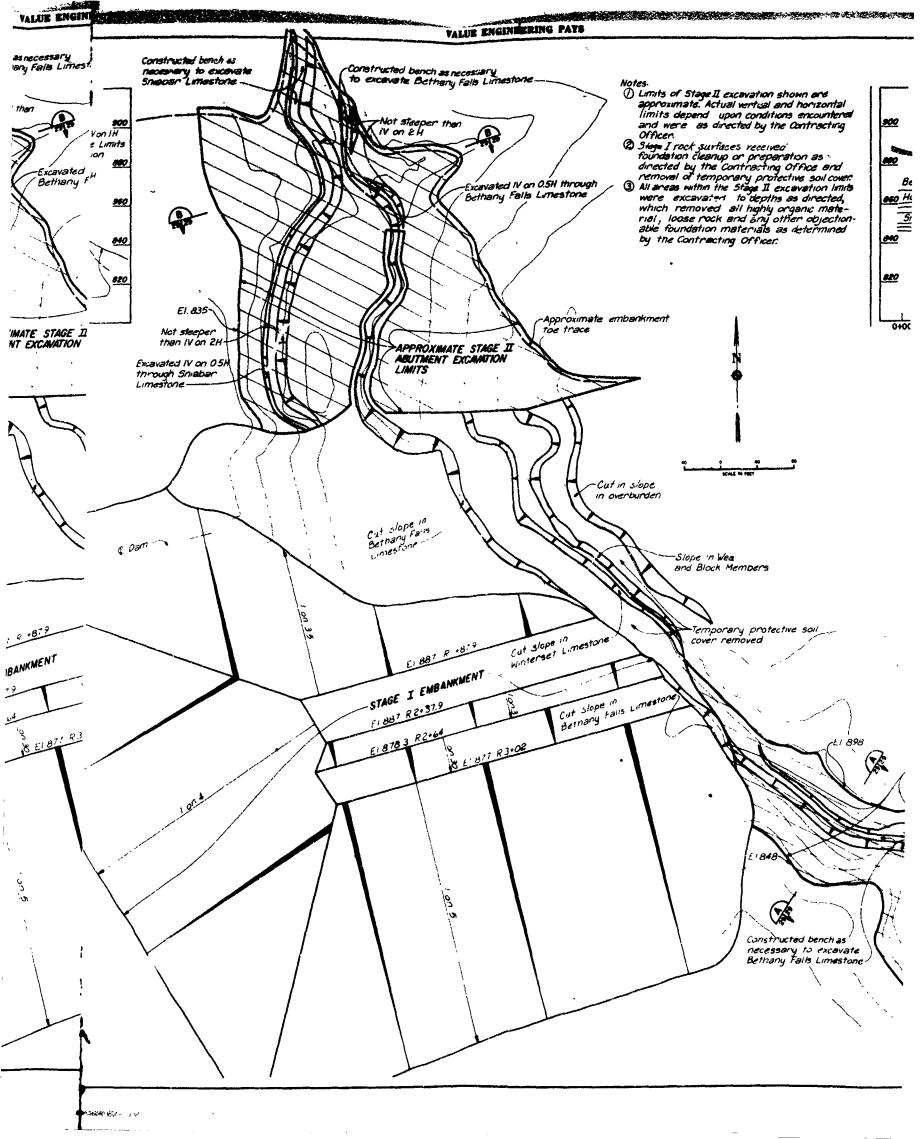


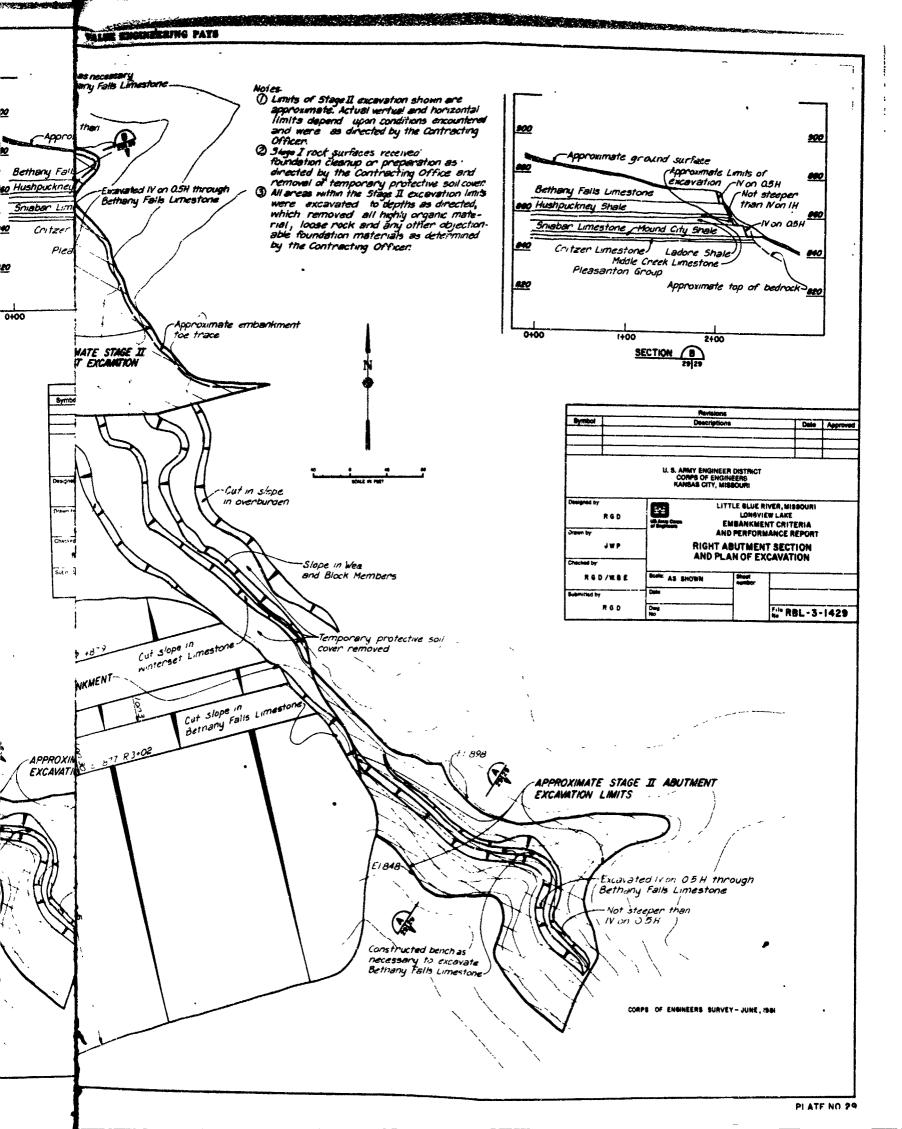


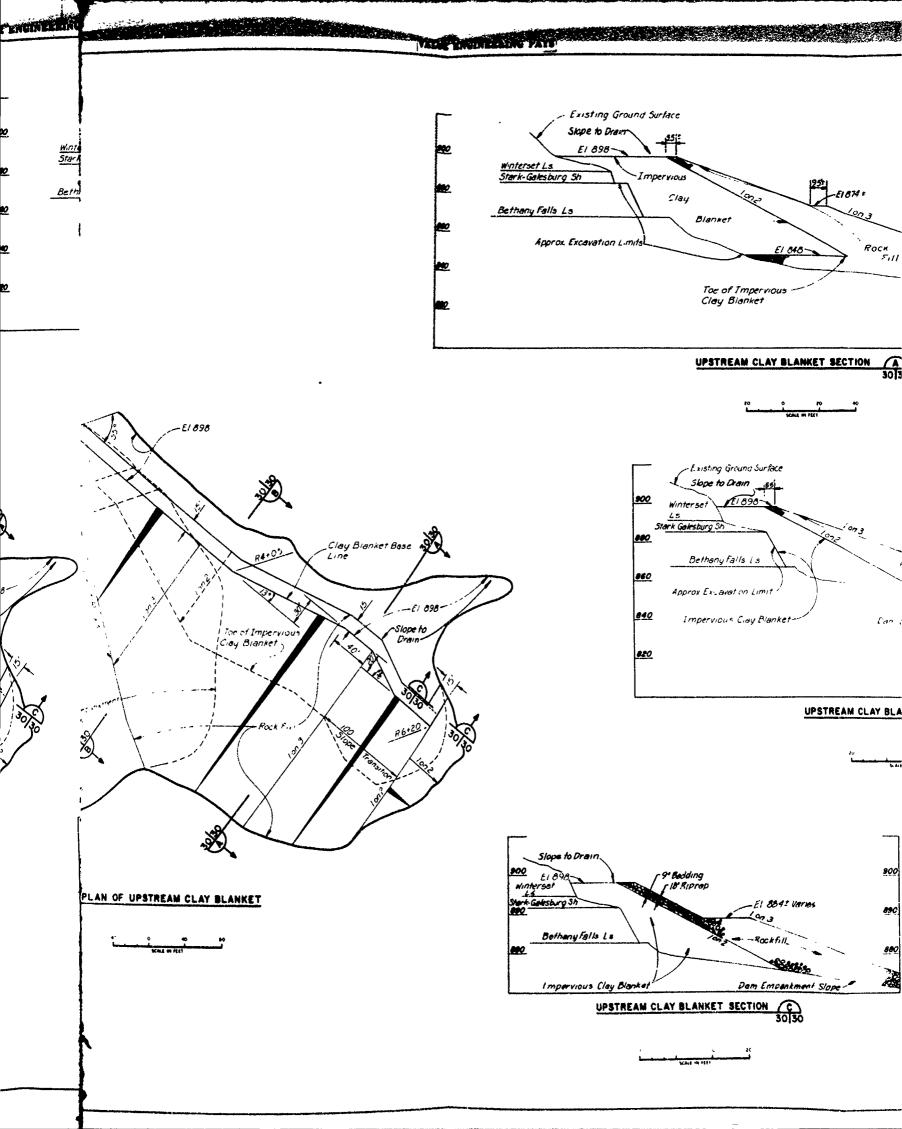


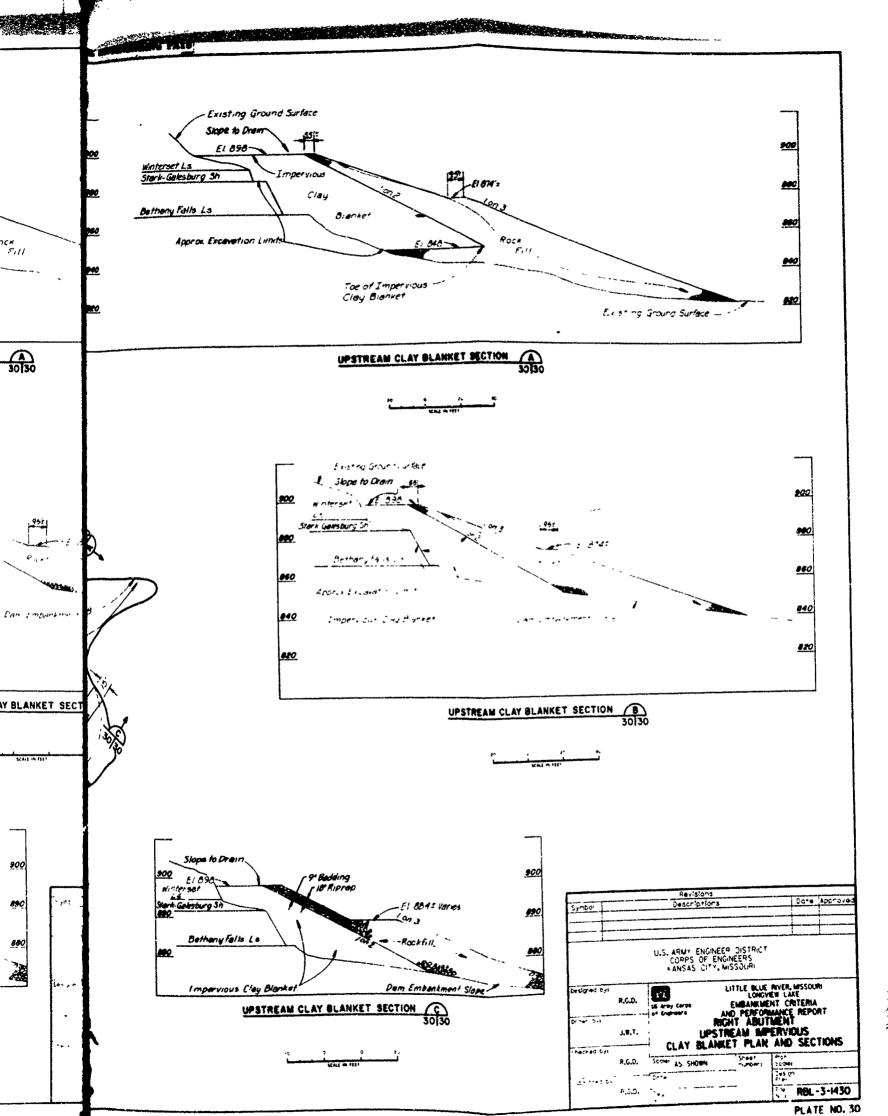


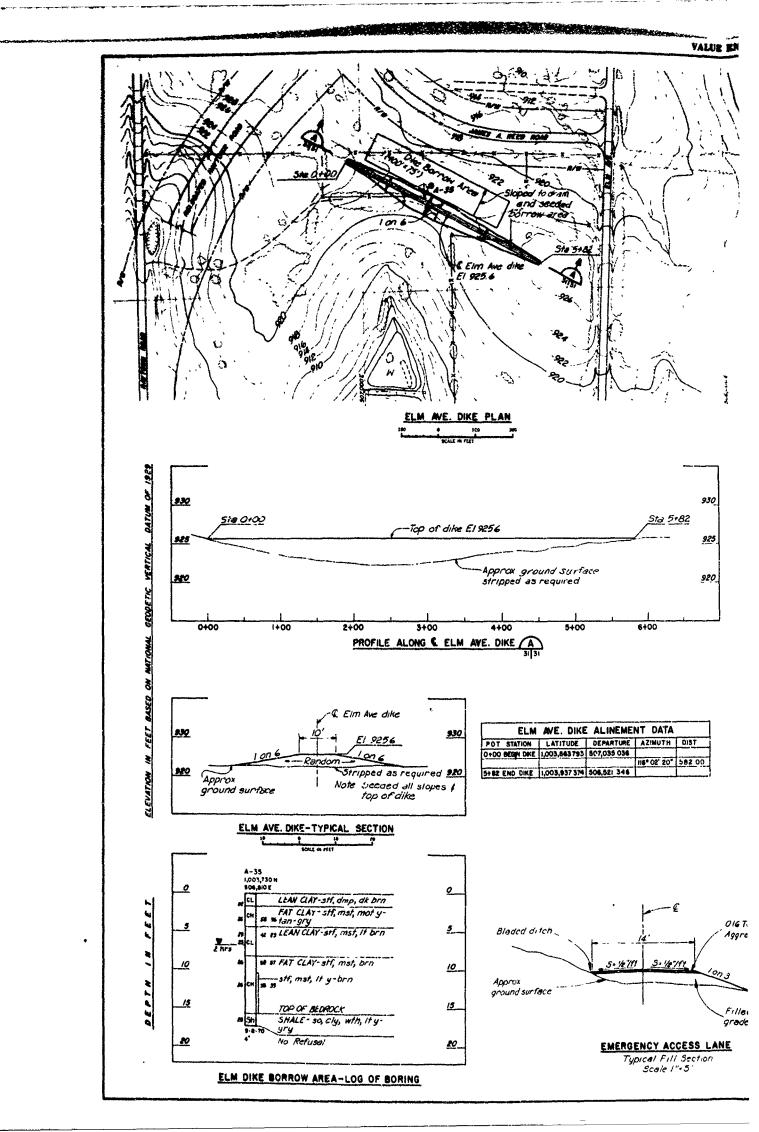


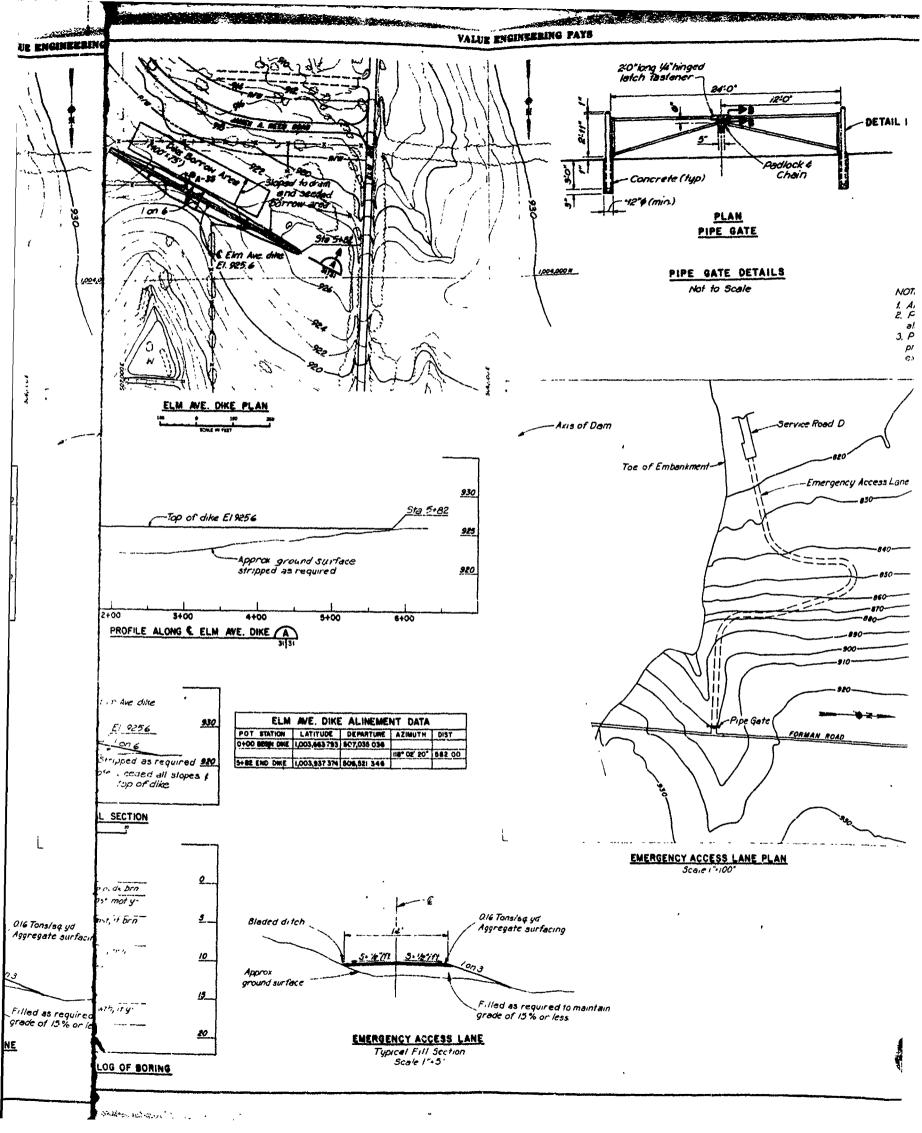


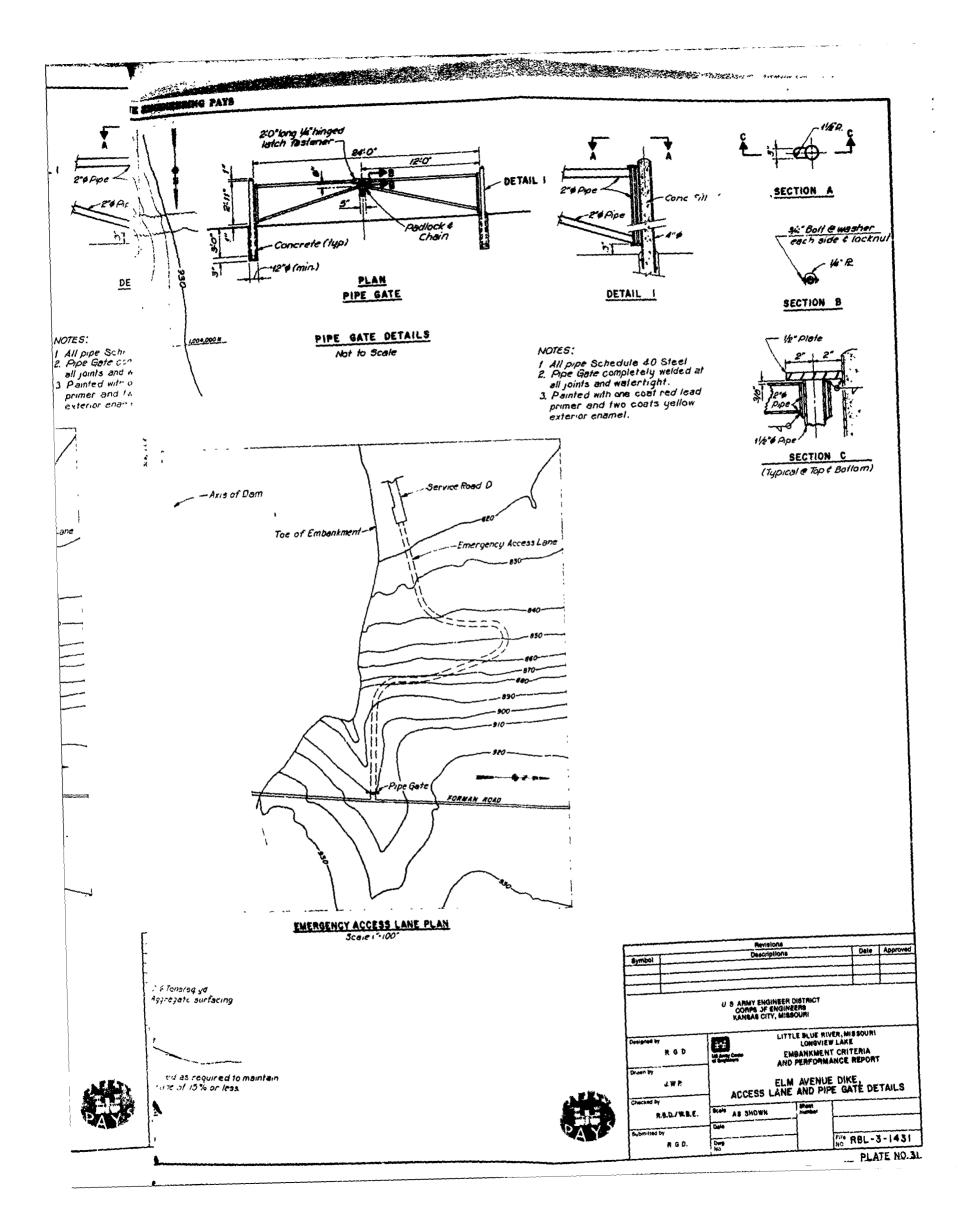


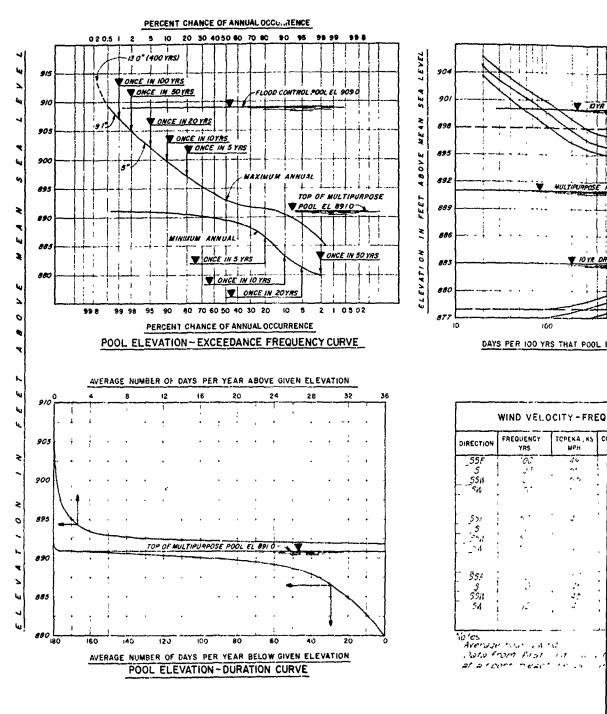









VALUE SH -E1.898 <u>. 6:1 898</u> Ciay Blanket Base Line Toe of Impervious Clay Blanket PLAN OF UPSTREAM CLAY BLANKET

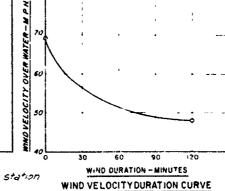


LOCATION			гсн		WIND	DESIGN (MI	
STA	ELEV	SLOPE	LENGTH	DIRECT	CURATION (MIN)	SPEED (MPH)	LENGTH
89730	920	Ion 3	14	5N']			
95t30	920	'on3	12	SW	•		İ
		·	†	·	¥3	٥,	d
10:190	920	on3	8	5W			
89190	89/	003	66	50	•		•
		• ·	1				
95130	<i>E91</i>	1-73	67	·.: '			
10:197	891	on3	40	*		*9	.`
98-27	HO/	.003	. 67	a.	1		

Note

I fetch length in me

CA reity of the control of maschized film

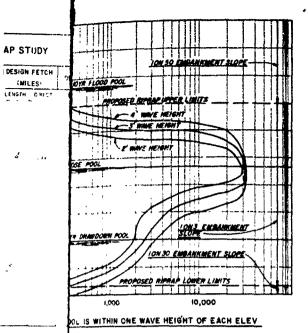

upper 10 of dam of the control of the control

for film. Design of Ministry Field Association

		OIVE	N ELE	VATI	ON		
		4	28		32		36
FRE	QUENCY				ļ	1	7
K\$	COLUMBIA , MI		•	•-		.	
	34						l
	. 42 43		•	• •	÷	• •	1
	1 14			٠	•	-+	1
					٠	•	1
	. 3⊰						l
	. ,			•	•	•	ł
	3						ı
	, ,		7	<u>:</u>	<u>.</u>	<u> </u>	1
		- 75	2.2			-	7
	• • •	· •					1
	• • • • • • • • • • • • • • • • • • • •	_		· ·	-	•	İ
	,			7			l
	, ~			1	1		1
-					•	1	1
		, –	40		20		١
	tiel bie	GIVEN	ELE	/A T 1			
r		OIACU			V-1		

CURVE

DIRECTION	FREQUENCY YRS	TOPEKA, KS	COLUMBIA, MO	KANSAS CITY, MO
55E	100	49	34	3/
55E 5 55M	103	55	4.	. 38 41
50N 5N		. 5,	* 43 54	• 41 \$U
····		, -),	•	. ***
350	4,3	٠. ٠	33	. 29
- S	7.	· ••)	* *o
55A		• • • • • • • • • • • • • • • • • • • •	. *	3 <i>9</i>
"	•	. 44		3
Š5£		. 4.7	7 ·	1 .54
55,	ري	: 16	· • •	ر او
	. 1	4.5	**	33
5#	ı "	. 4.	J	32
	•			



Note: Mond versus by computed the control of the co

A STATE OF THE PARTY OF THE PAR

	CRITICAL W	INDVEL
L		RIPRA
	WIND VELOCITY M PH	WIN
<u> </u>	48	ı
į .	49	
1		
	53	
Į	11	
l	ግር ሳሃ ቋቋ	
1	63	
ł	27	
ì		
	•	
l		RIPRAP
1	49	
	4 9	
1	٠ •	
ł	A.J	•
ł	no XX	
ì	• •	
į	دنه	
ľ		
١		

Symbol Symbol Designed by Chan he

y and their one of

16, 100 101.

J E B

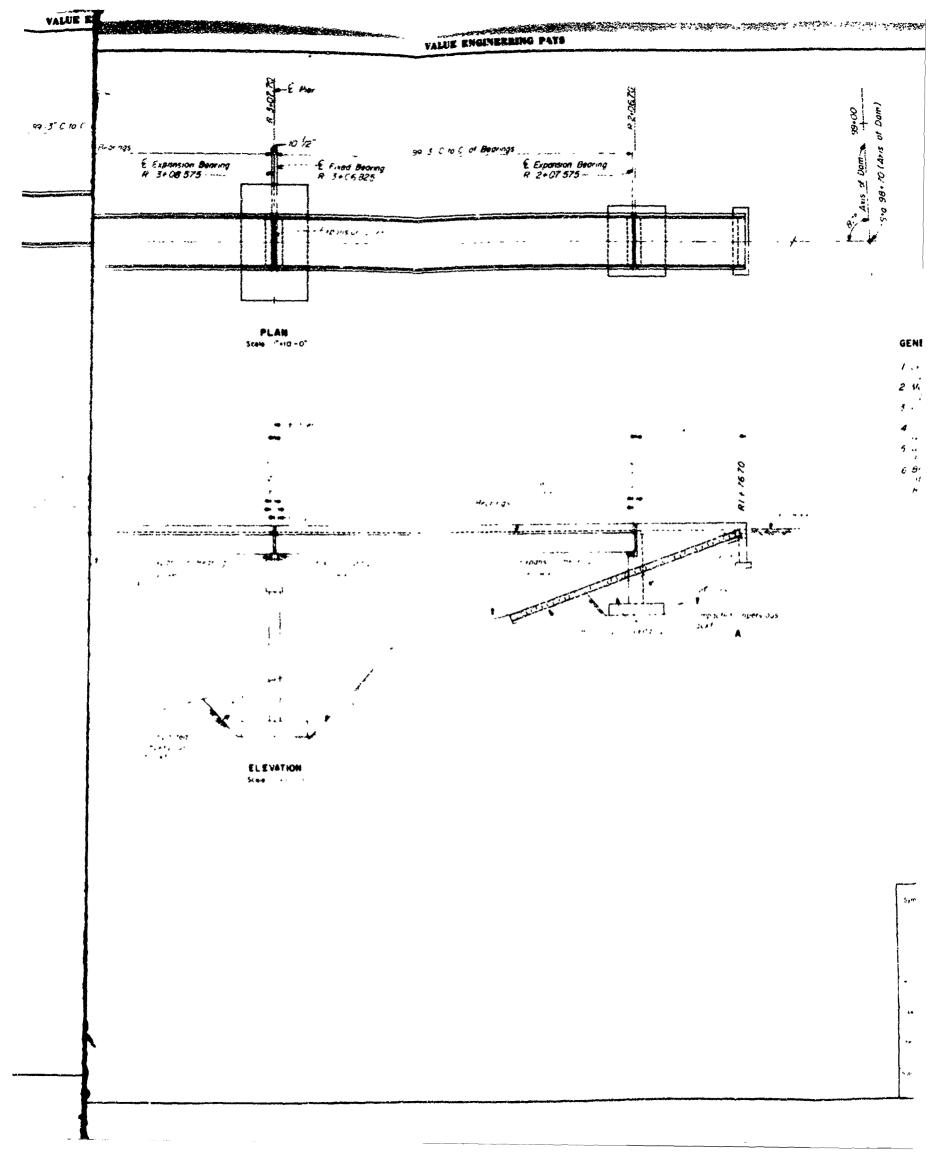
Hut 46

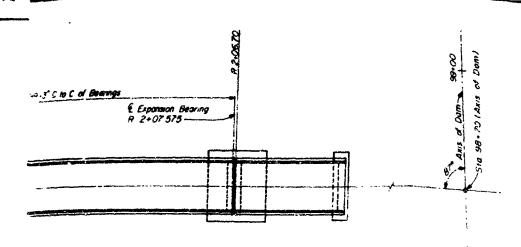
Ð

Y • 2	GRAVIT	(SPECIFIC				UDY	RAP ST	RIPF						
		RiPA		1 MAYE	DESIGN		DESIGN (MIL		DESIGN	гсн	PEI	1	OCATIO	ł
SF	THICK	PROPOSED	We	HD	M _S	DIMECT	LEXETH	SPEED (MPH)	CURATION (MM)		LENGTH	SLOPE	ELEV	STA
										5W	14	10n 3	920	59t30
See	18"	100	117	41	^a :	5n	14	5é	0د	5W	12	lon3	920	95130
none	,,		***			1	,			5W	θ	inn3	920	10!+90
					~					5W	66	Ion 3	891	89190
1							·			511	67	[-03	89/	95130
/3	18"	100	51	31	22	SN'	07	59	20	3	46	lon3	89/	101190
1		1								SW	67	Ian3	89/	98120

I Fetch length in miles.

2 A reduced the known of rights was utilized for the uppar 10' of dain in 300 ordinary with the taria for Riprap Design in Missouri Rivar Division June 1937.


VELOCITY -	ŧ	EQUENCY C	HART						
RIPRAPA" F.	F	COLUMBIA.MO	KANSAS CITY, MO]					
WIND DANK WIN	ŀ	34	3/ 38	1					
		43	41	N O M					
•			. 29 36 59 3*	OVER WATER - W					!
PRAP AT E + + +		j	3 3 34 32	WD VELOCITY					
	ŀ	-		Li ≋i aoi	,	30	60 ID DURATII	90	120
	1	7-4 2 163.	u recording s	tation	WI				N CURVE


Wind velocity computed from ETE/N 2002 29 No. 16) converted to even water velocities by natio of 1901 B

	RIPRAP AT ELEV 891	
WIND VELOCITY MPH	WIND DUNATION MIN	FORECAST HS - HT
40	70	'S , felon limited
49	ð.	(8) (Fetch (imited)
5/	oc ^o	18 (Fetch limited)
~ 3	50	20 (Fetch limited)
54	40	20(tetch (imited)
50	30	21 (str limited)
59 X ⊁	${\boldsymbol w}$	2.º (Fetch limited)
<i>65</i>	10	231 Duration limit
		_
	•	
	· ····	Ĺ
	RIPRAP AT ELEV 920	
- 48 ·	120	20 (Fetch imited)
49	90	26: fetch lim tea
5/	W	in Falch limited)
5/ - 53 - 54	50	iditeren united)
5 <i>i</i>	4.	39 Fetch united
50 XX	50	19 Felon i mired
59	. a.	24 Duration Time
63	0	22 (Duration limit)
•		-
	•	t

YX indicates critical and le of thaird auration

		Revisions					
Symbol		Descriptions					
					 		
		ENGINEER OF ENGIN CITY, MIS	EERS		***************************************		
Designed by	E-S	COMBUTER LAKE					
Creen by		AND PERFORMANCE REPORT					
J E. B		SLOPE PROTECTION STUDY					
Checked by							
RGD/WB (Scale AS SHOW	VN.	Bheet number	T			
Submitted by	Date]				
RGD	Dws No		1	File RBL-3	1432		

GENERAL NO

1 . . . 2 14. 1 3 miles 1 5 -- • 6 8- 30 0 - 1 · Bear · g ·

1670 Compacted impervious 1410 4

GENERAL NOTES - BRIDGE

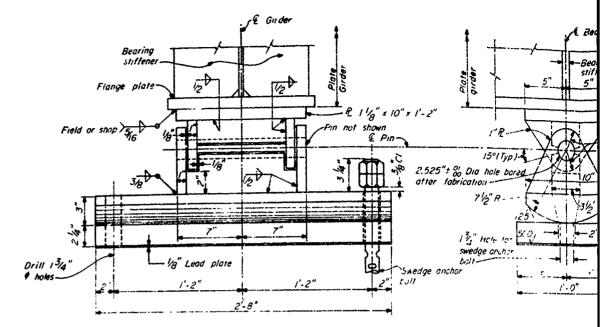
- I Design Lectification AASHTO 1977 Edition
 Live neas H 6-44 at normal sireses

 Michie ia h Ariahing 35 tans carrying 90 kips,
 Live vide of a Arestreus winder in pact

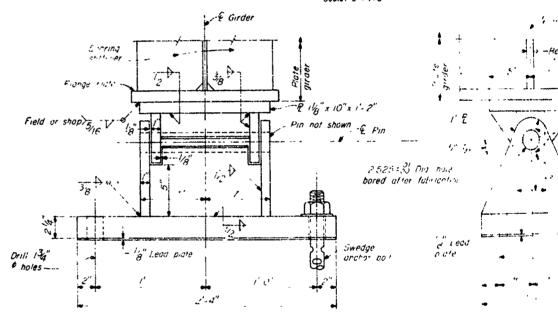
 3 All estimation chamfered 3/4

 Unity of 100 tanks in 100 tanks

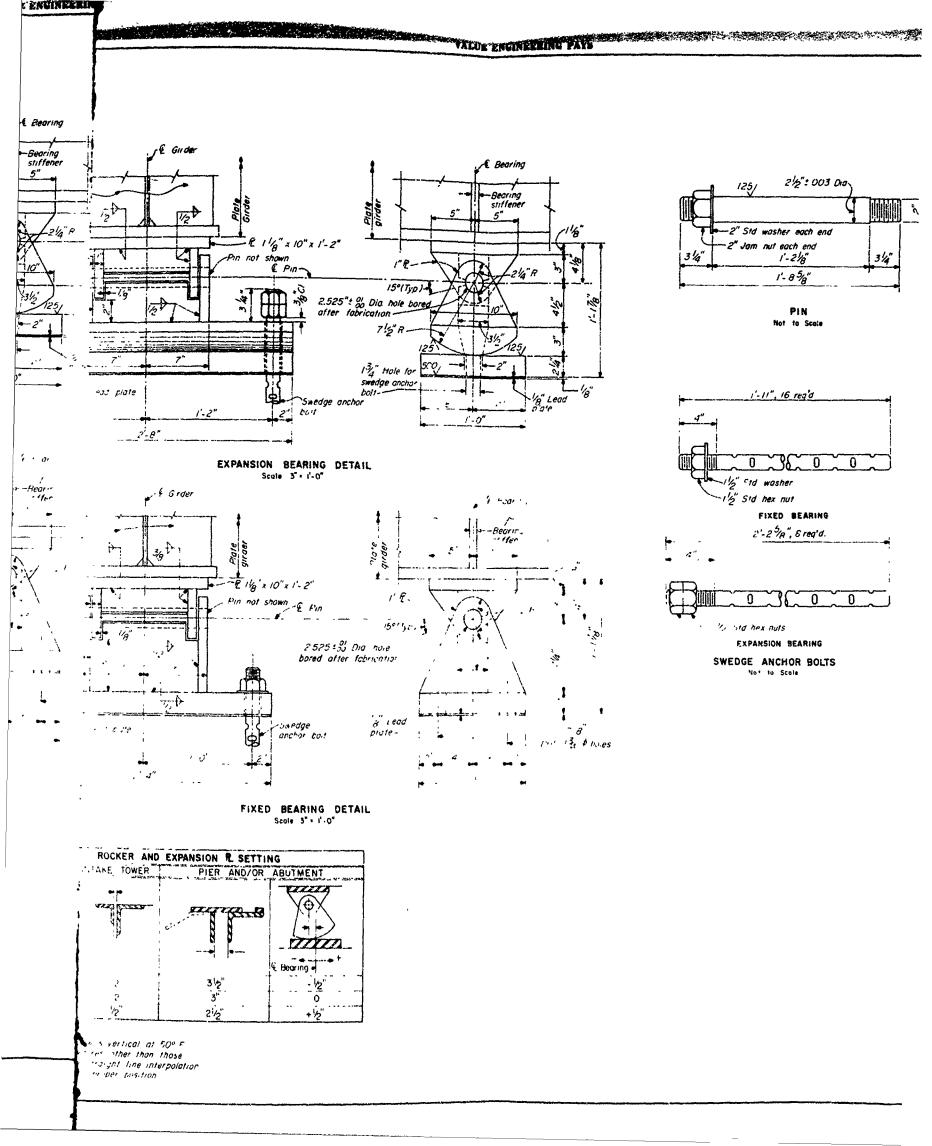
 4 Live there is ing

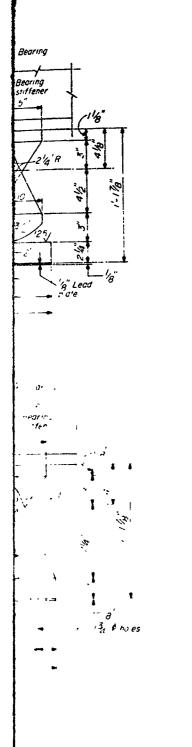

 4 Live there is the more structured in 100 tanks

 5 A restruction of the Structure of a 100 tanks are measured along centerline
 of Outlet Works with starting point at Intake Tower


 R 4 of 08 in 20 utilet Works Sta 45 f 9 i 30

	Revisio	na		
Symbol	Descript	Ons	Date	Approved
				
Designed by	U S ARMY ENGIN CORPS OF EN KANSAS CITY	GINEERS MISSOURI	IVER, MISSOURI	
R G D	US terry Corps	LONG/II	EW LAKE NT CRITERIA MANCE REPORT	
PR L		ERVICE BE IN AND ELE		
RGD/WBE	Scale AS SHOWN	Sheet number		
Submitted by	Dete			
# G D	Dwg No		File RBL-3-	1433

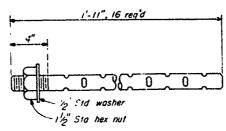

EXPANSION BEARING DETAIL.

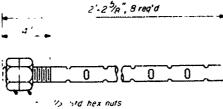


FIXED BEARING DETAIL Scole: 3" + 1'-0"


	ROCKER AND	EXPANSION & SETTIN	
	INTAKE TOWER	PIER AND/OR	ABUTMENT
Temperature at time of setting			© Bearing
0°F	~ · · · · · · · · · · · · · · · · · · ·	315"	.1/2"
50° F	1/2	3"	·
100°F	l ₂ "	21/2"	+½"

NOTE:
Axis of racker is vertical at 50° f
F i temperatures other than those
shown use straight line interpolation
to determine proper position




MUNICIPAL PAYS

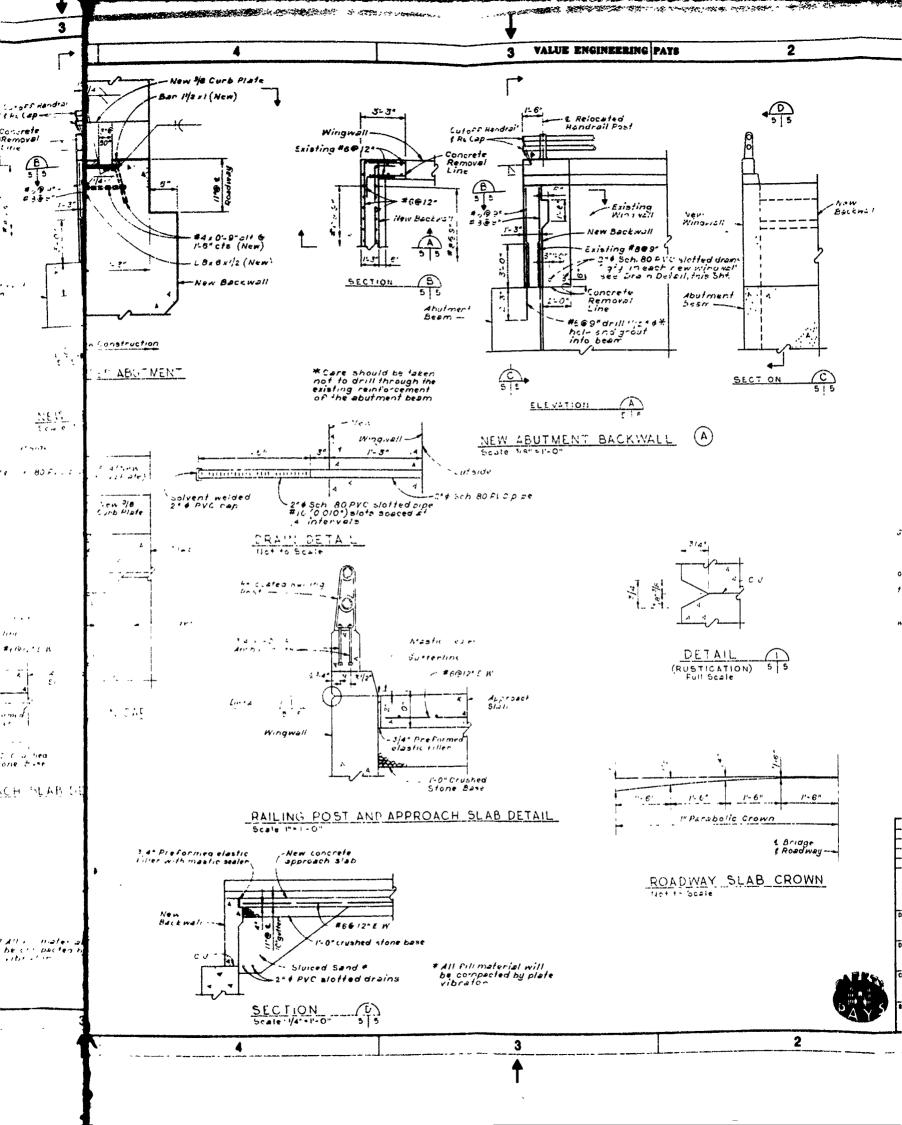
PIN Not to Scale

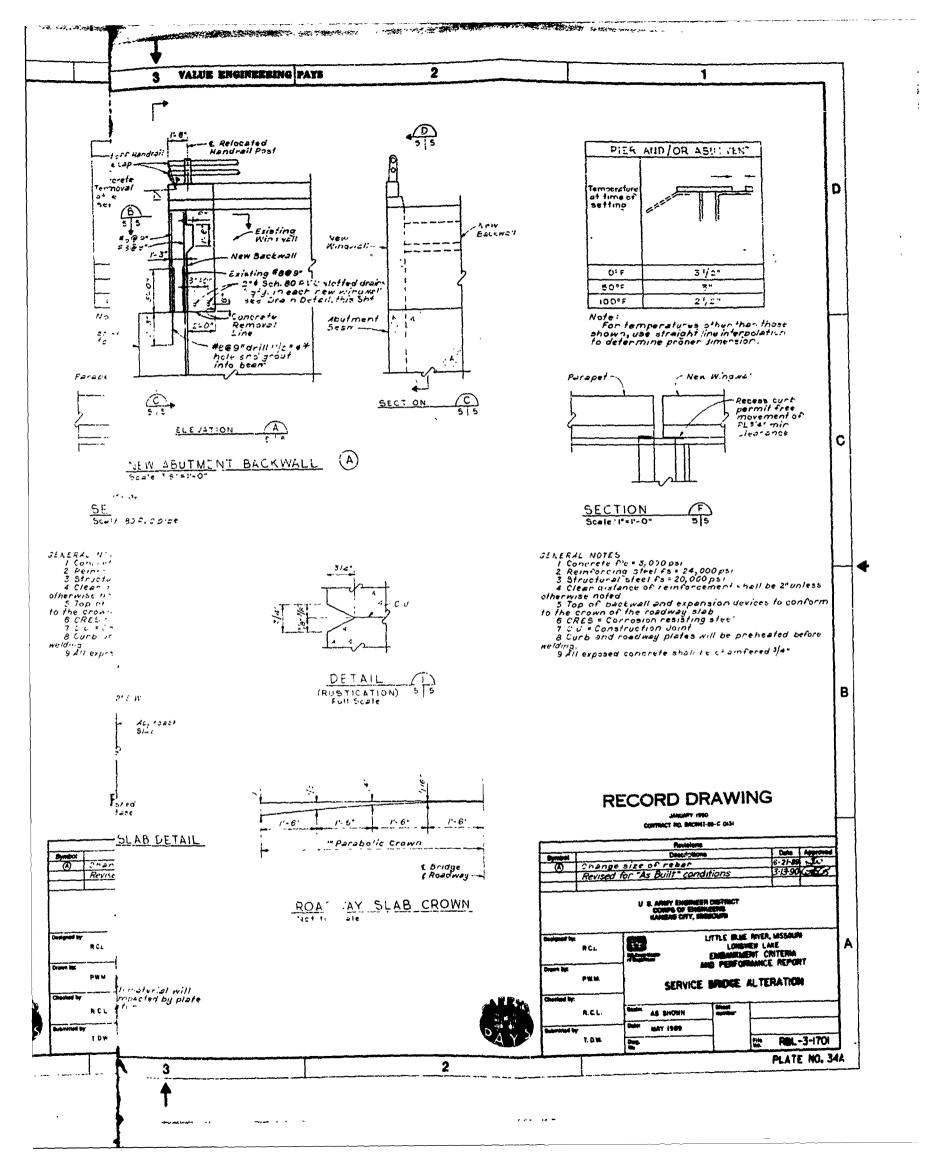
FIXED BEARING

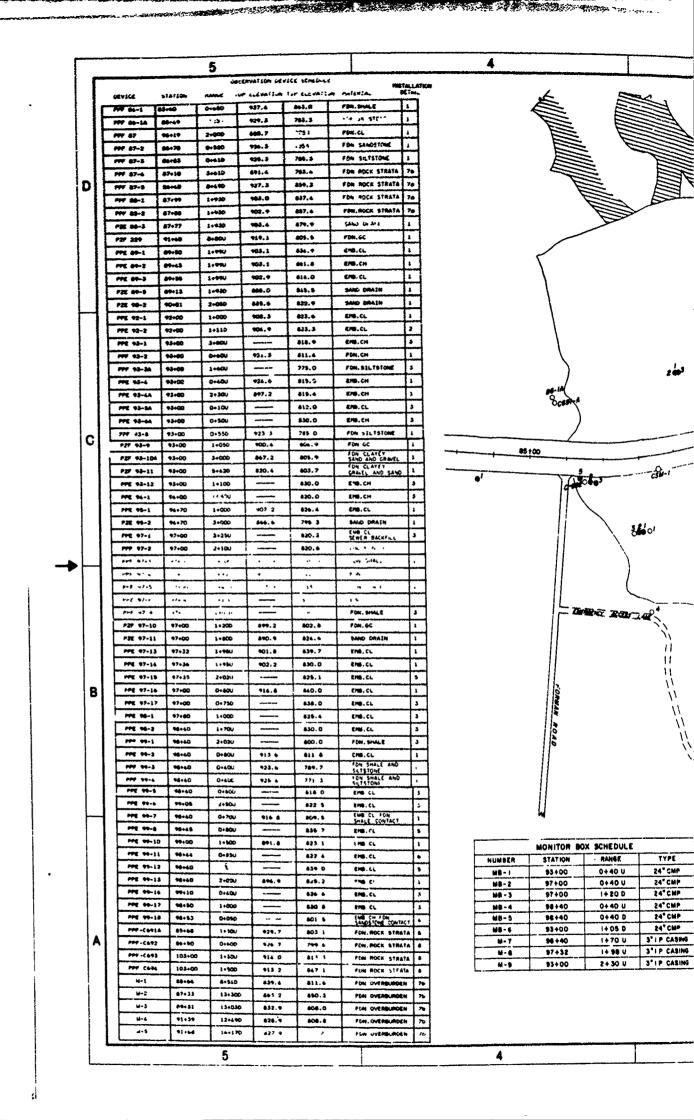
EXPANSION BEARING

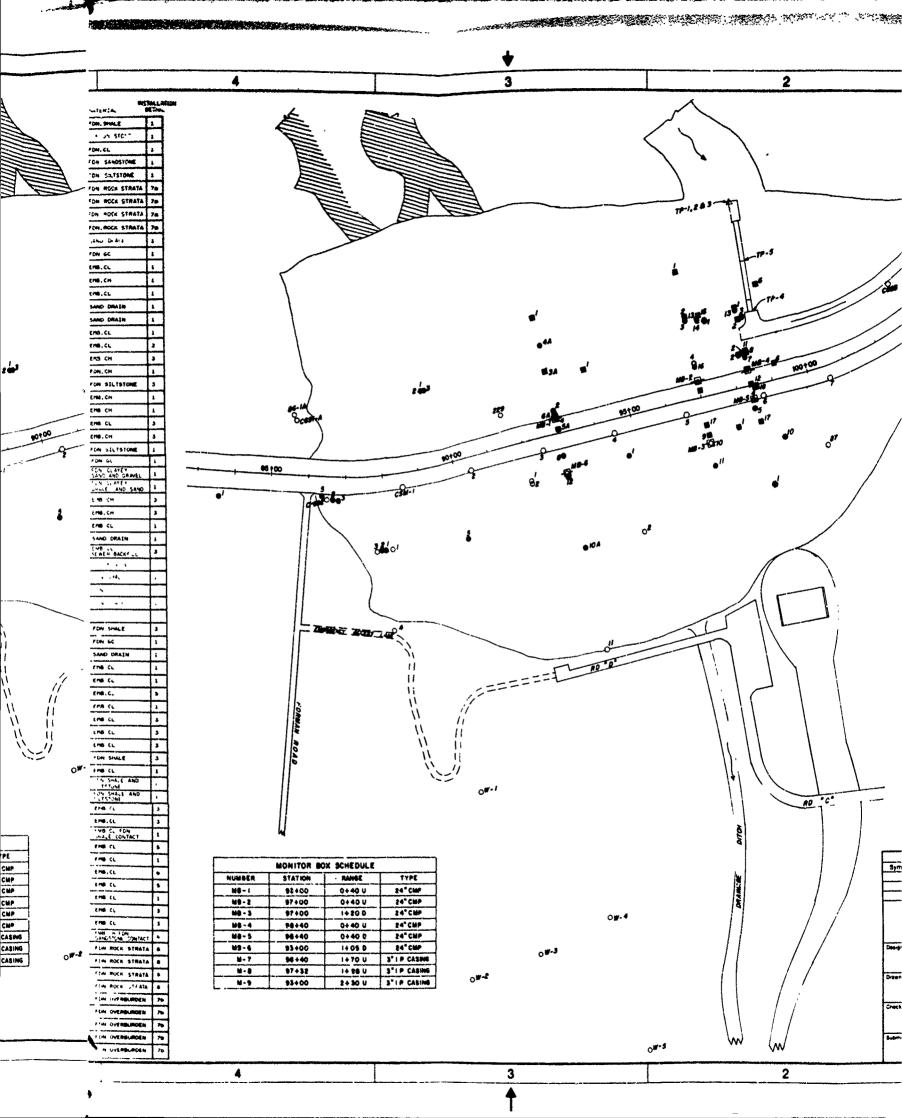
SWEDGE ANCHOR BOLTS Not to Scale

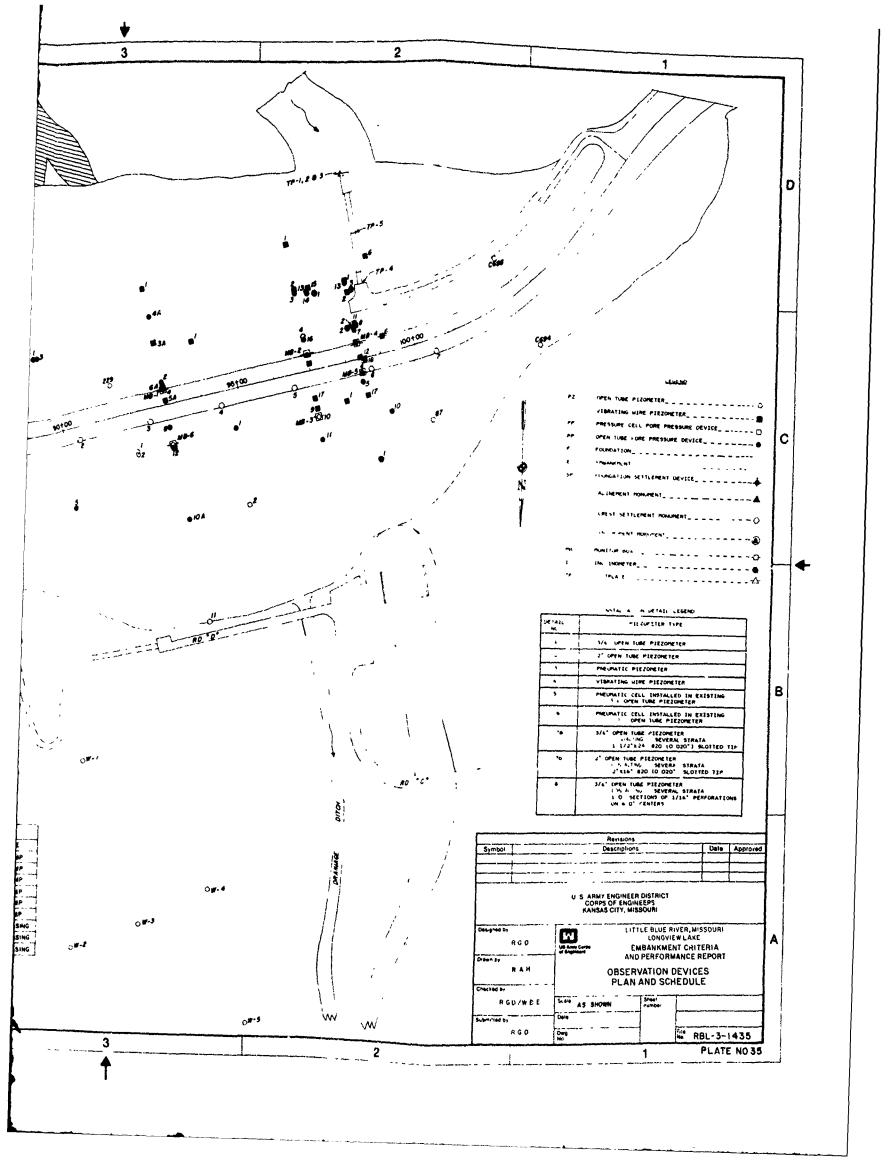
NOTES

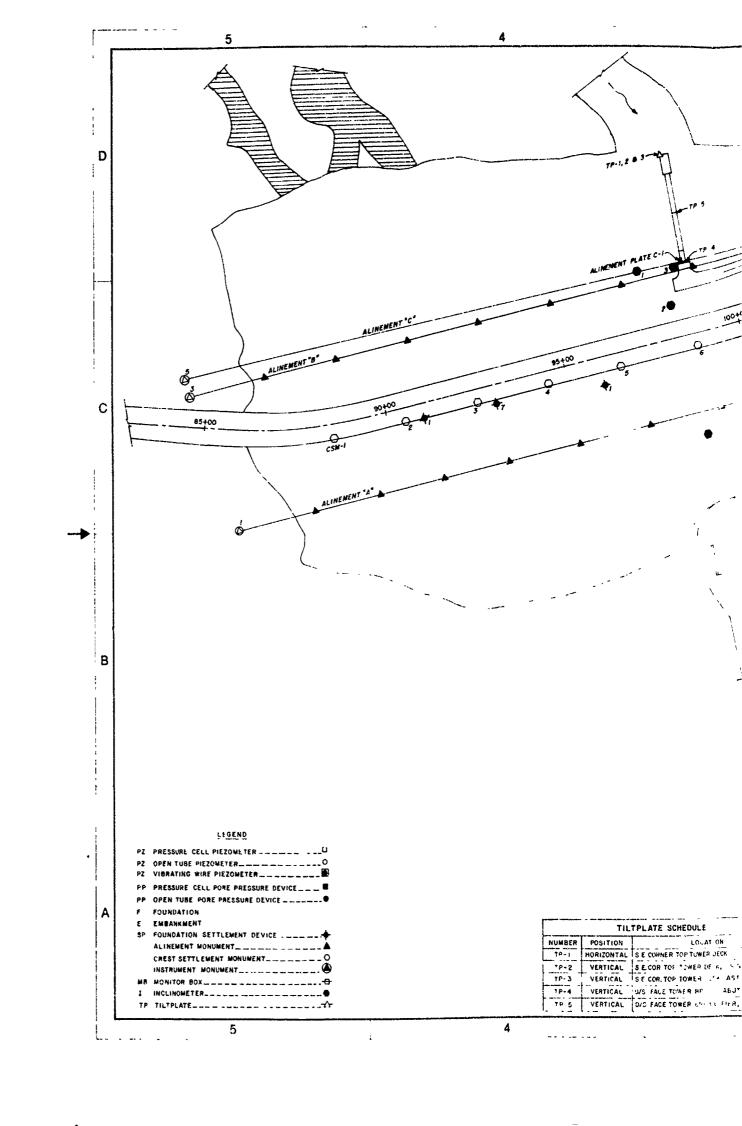

THE RESIDENCE OF THE PROPERTY

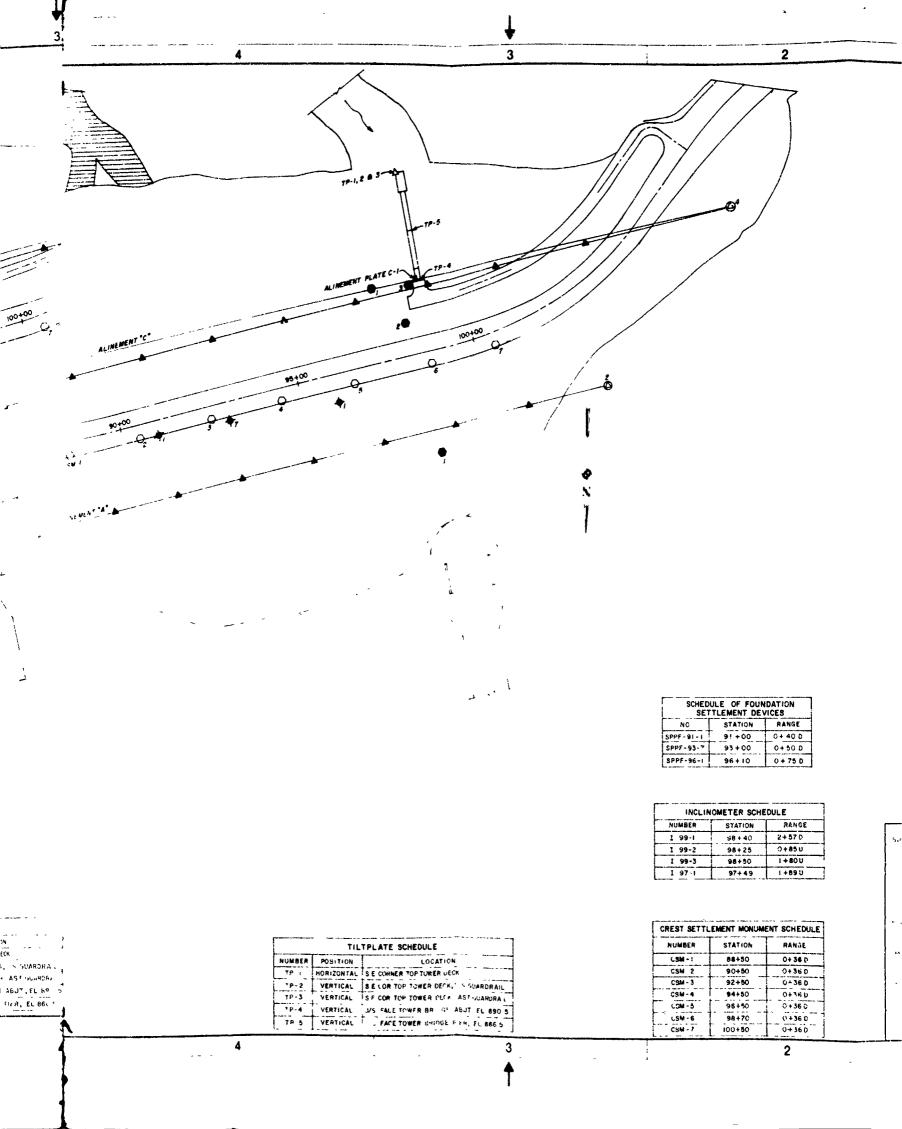

- I Shoes fab...c. from structural steel plates. Where machined surfaces were required, sufficient stock was allowed to provide the dimensions as shown Shoes were stress relieved by heat treating after welding
 Nuts for the anchor bolls on fixed bearings were
- 2 Nuts for the anchor bolts on tiked bearings were tightened and the threads punched to lock nuts Expansion bearings had the nuts tightened against each other.

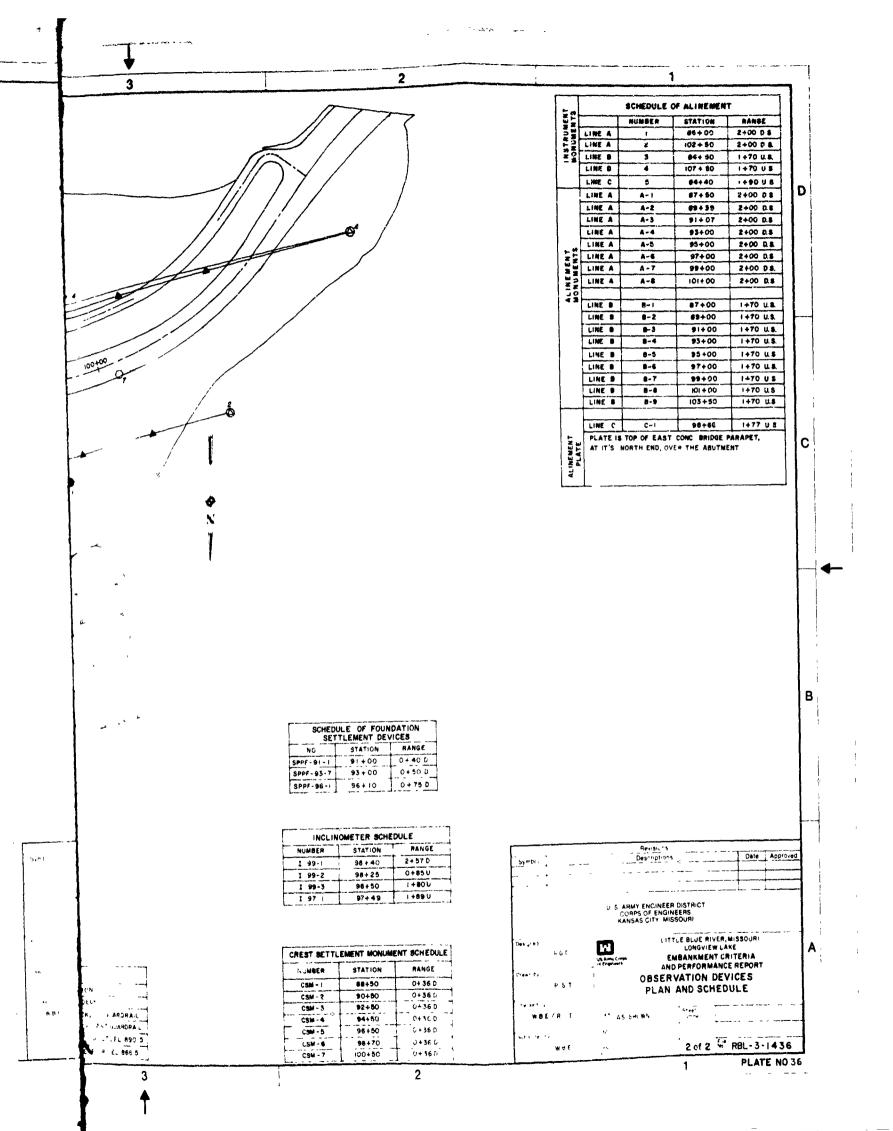

 3 Bolts may be deformed cold or healed to make swedge anchor bolts.
- Anchor bolts for bearings are 1/2 swedge bolts and extend 18" into concrete

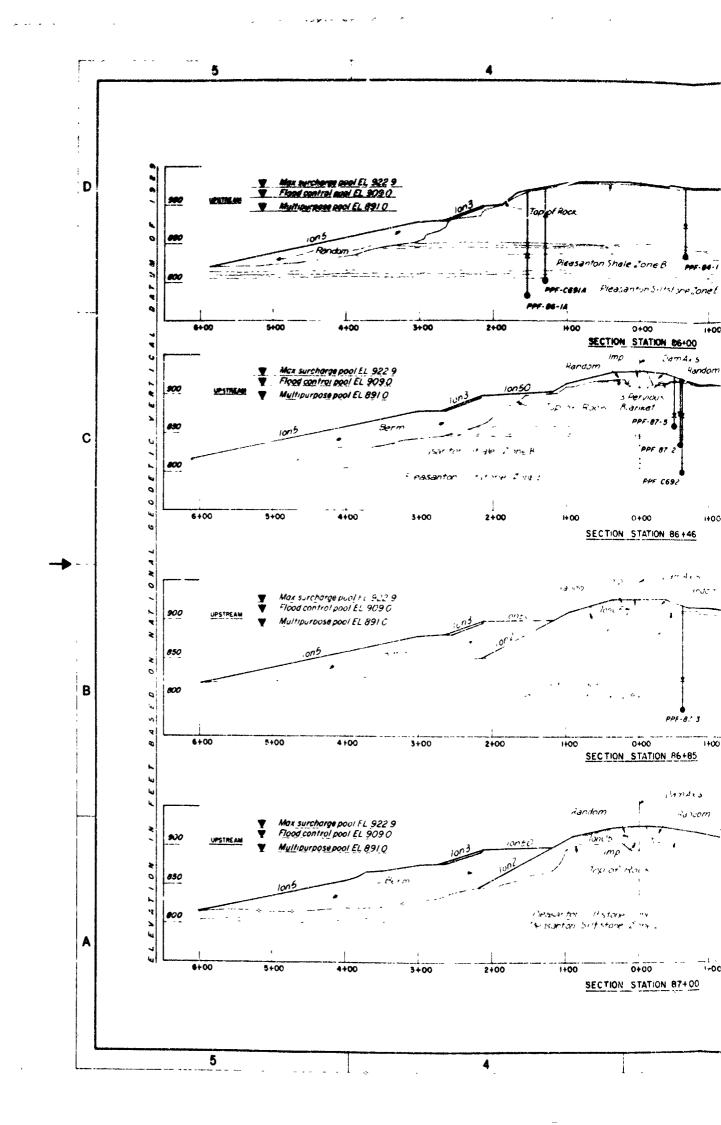

 5 Used a Non Ferrous, Non-Shrinking grout

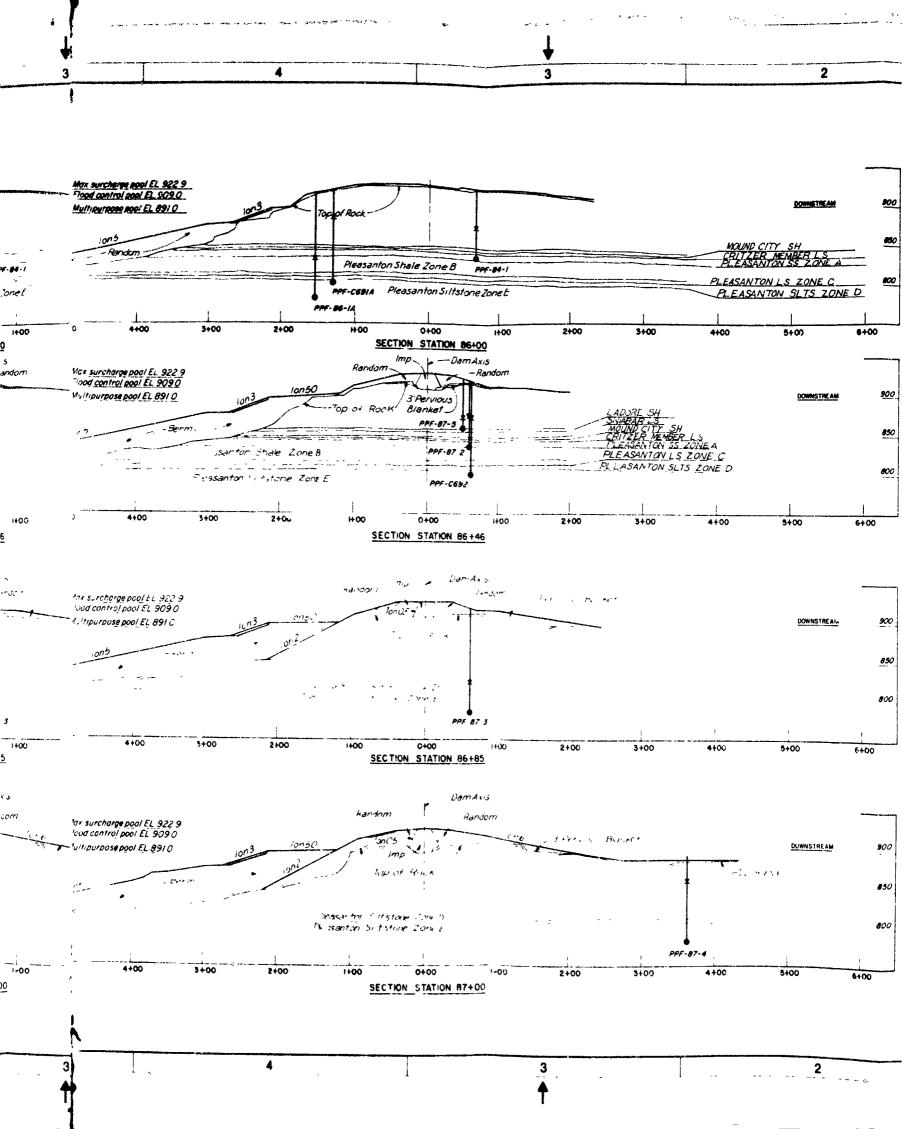

······································	Plev	isions					
Symbol	Desc	Descriptions					
				1			
				L			
	CORPS OF	GINEER DISTRICT ENGINEERS TY, MISSOURI					
Designed by	66	LITTLE BLUE RIVER, MISSOURI					
RGD	in it	LONGVIE					
	US Army Corps of Engineers		NT CRITERIA MANCE REPORT				
Drawr by		ARUFERIUR	HANGE HELVING				
PRC		SERVICE BR	IDGE				
	MIS	CELLANEOU!	SDETAILS				
Checked by							
R G D/W	E Scale AS SHOWN	Sheet *umber					
Submitted by	Date	1	1				
RGD	Dwg		File man	1474			
, , ,	No	[No RBL - 3	-1-3-			

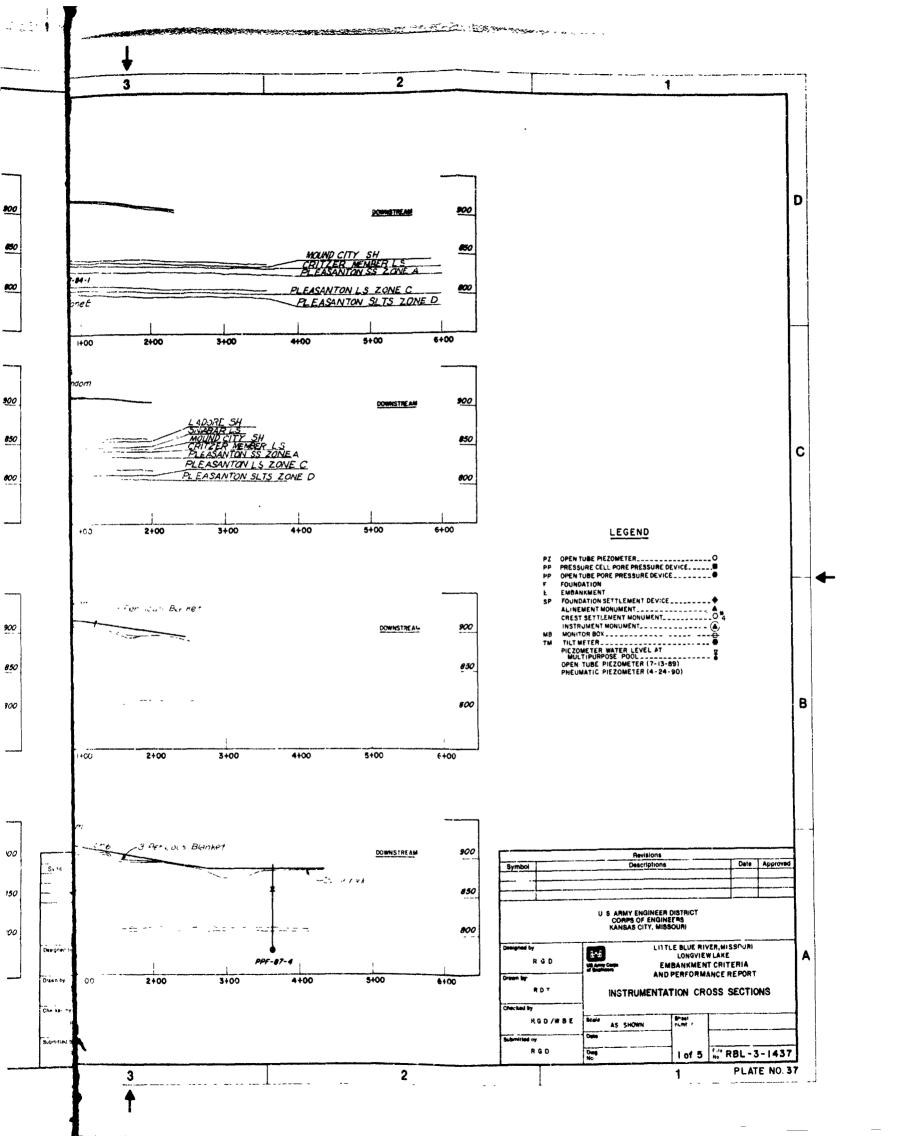


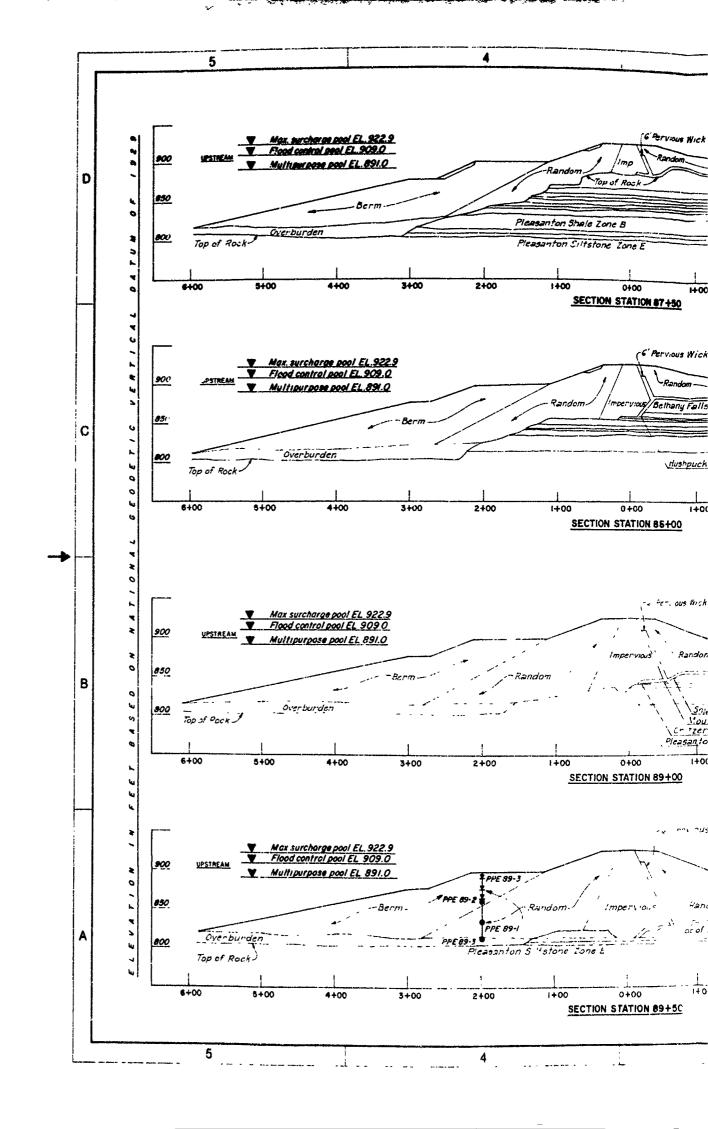


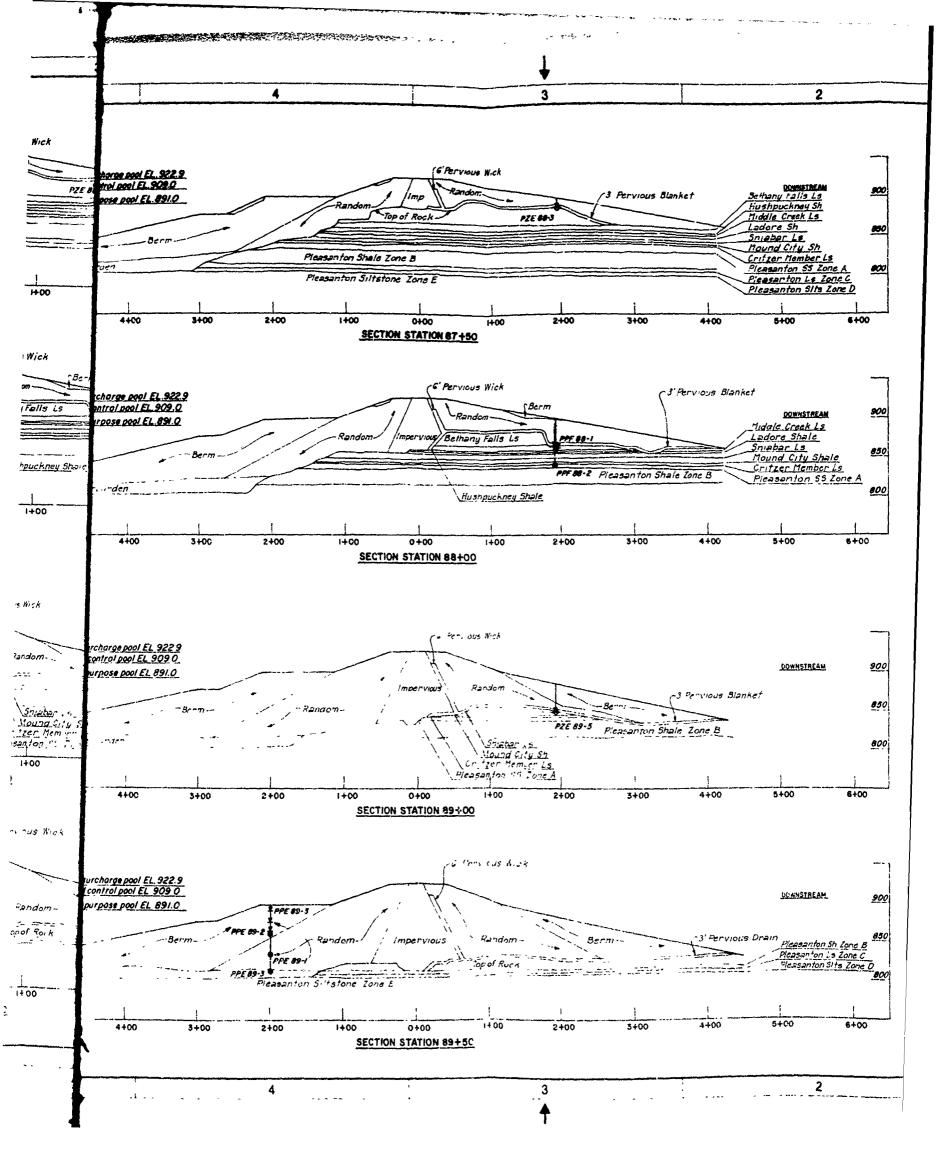


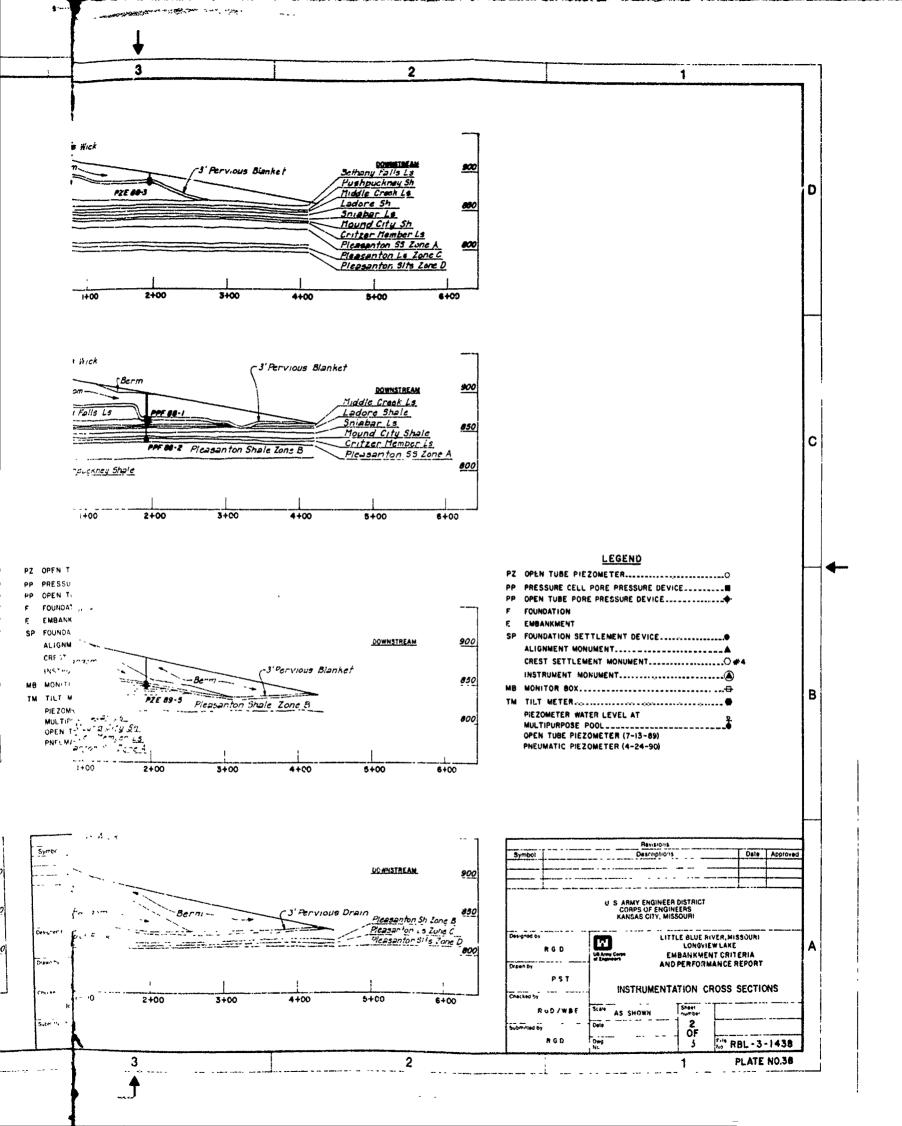


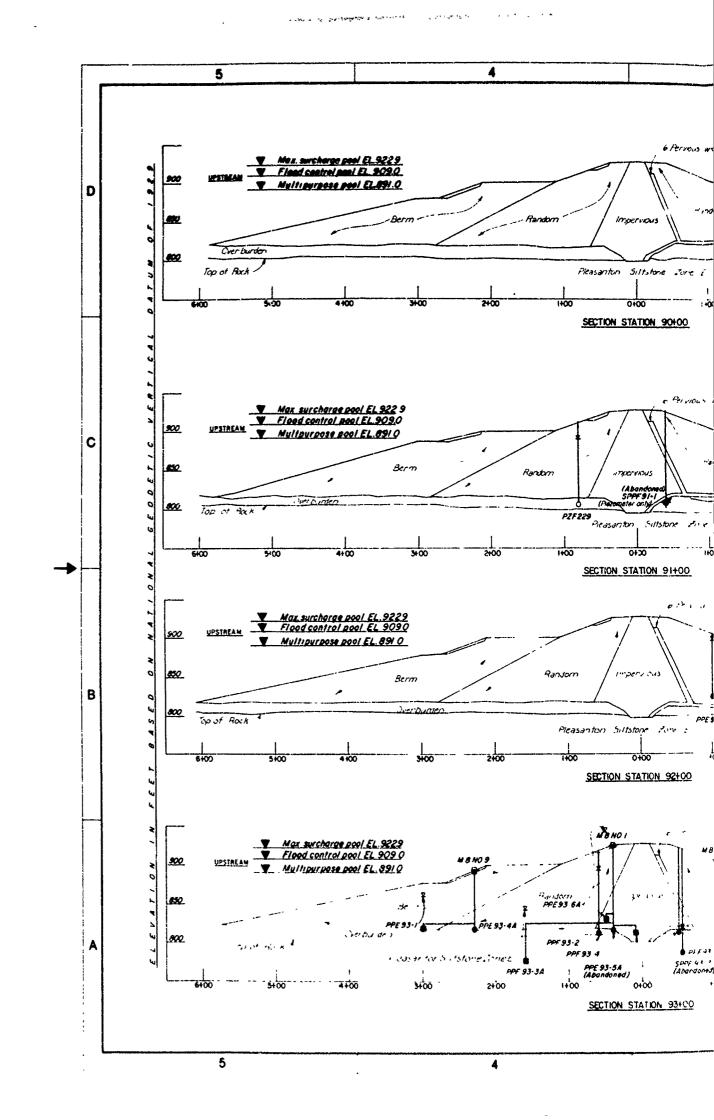


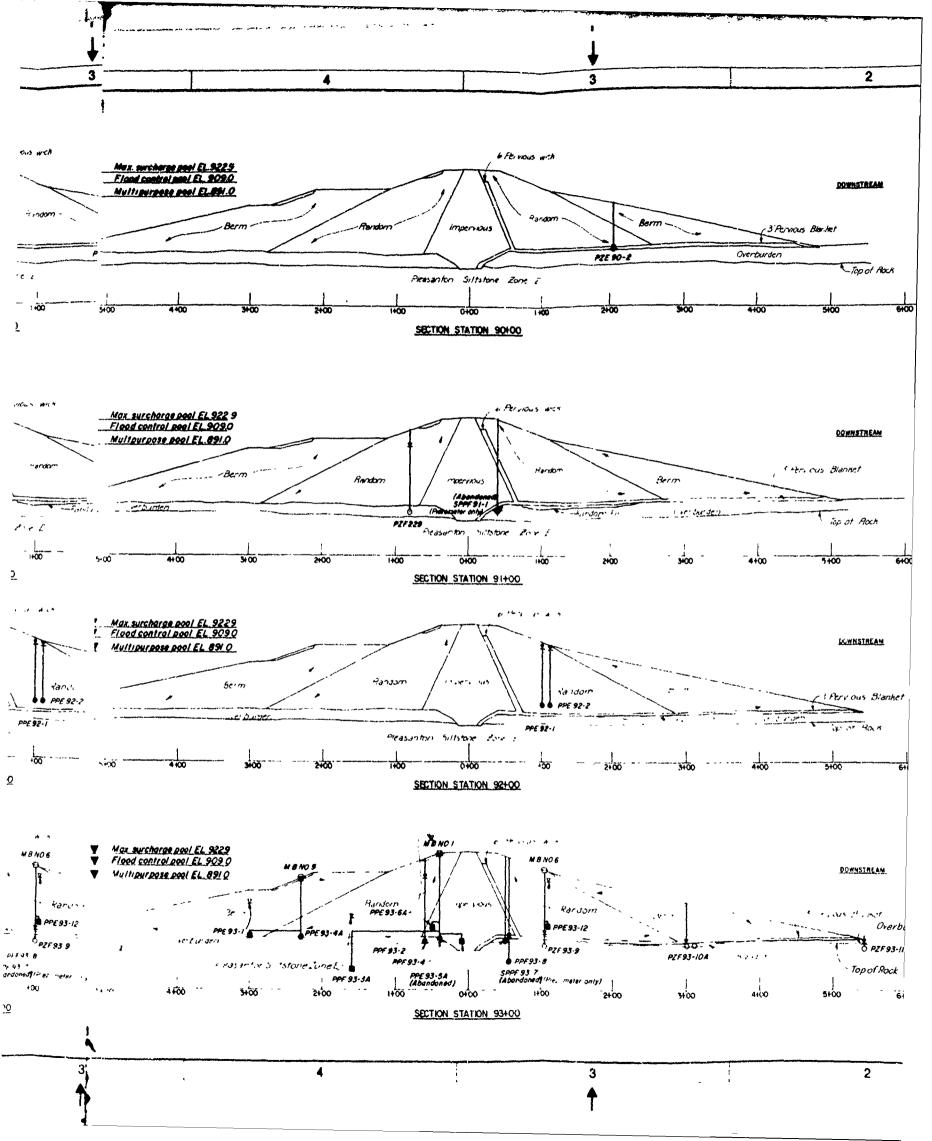


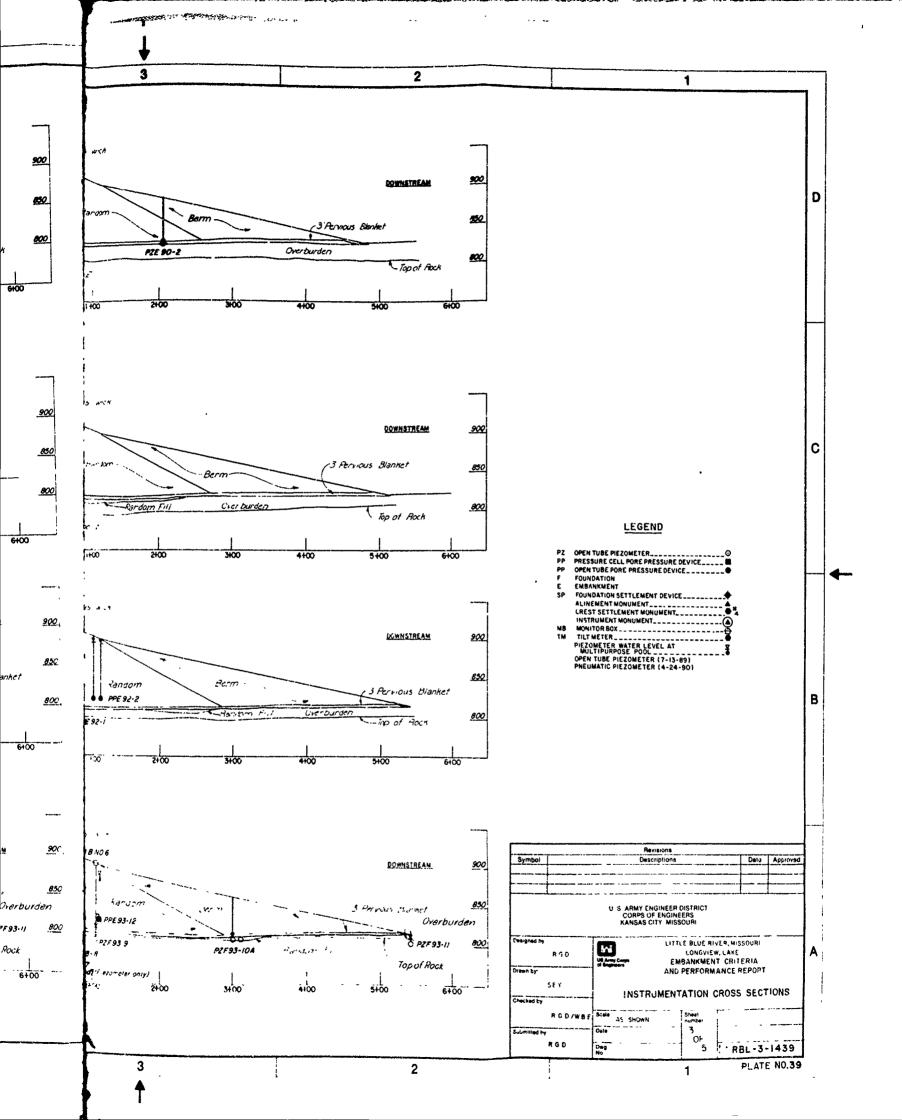


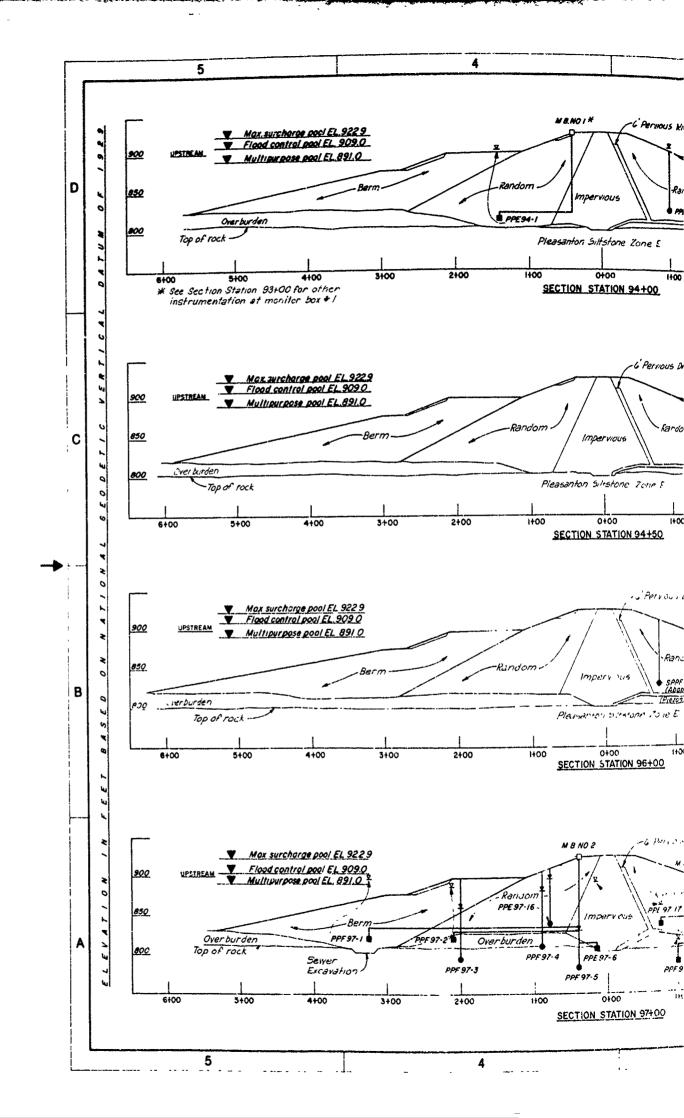


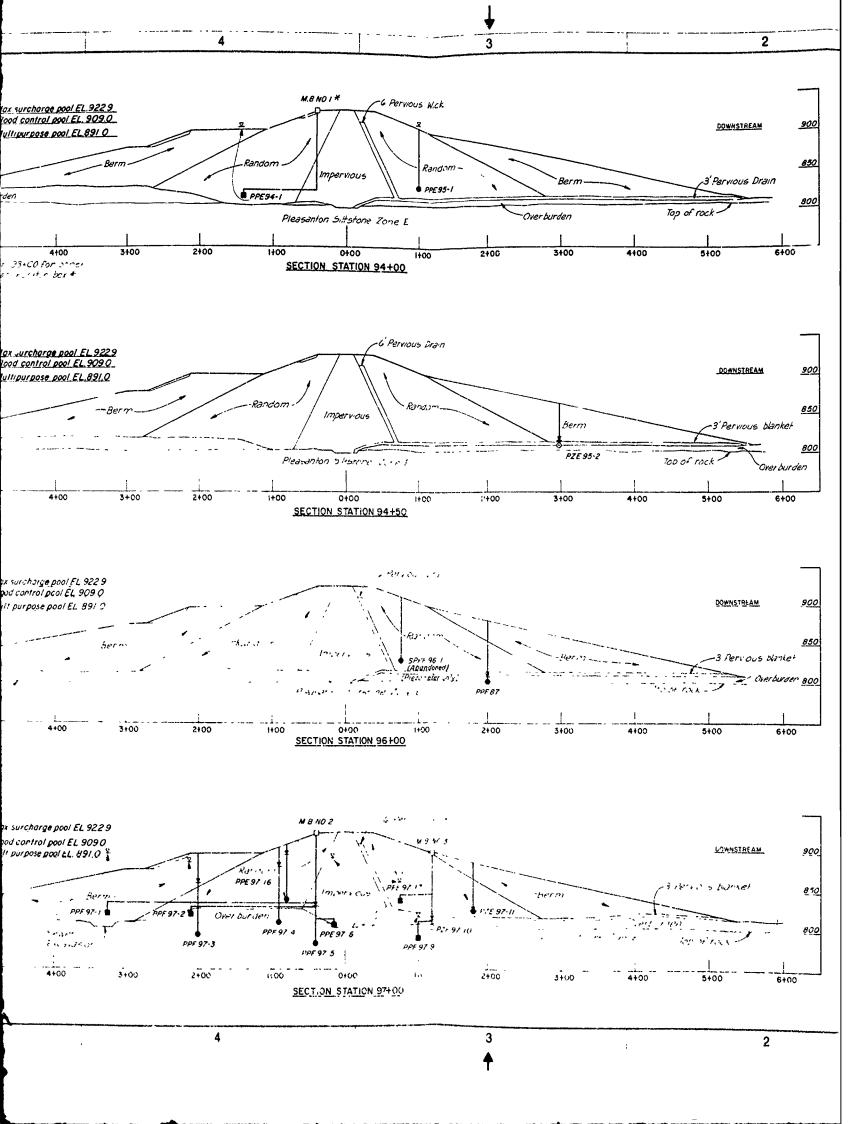


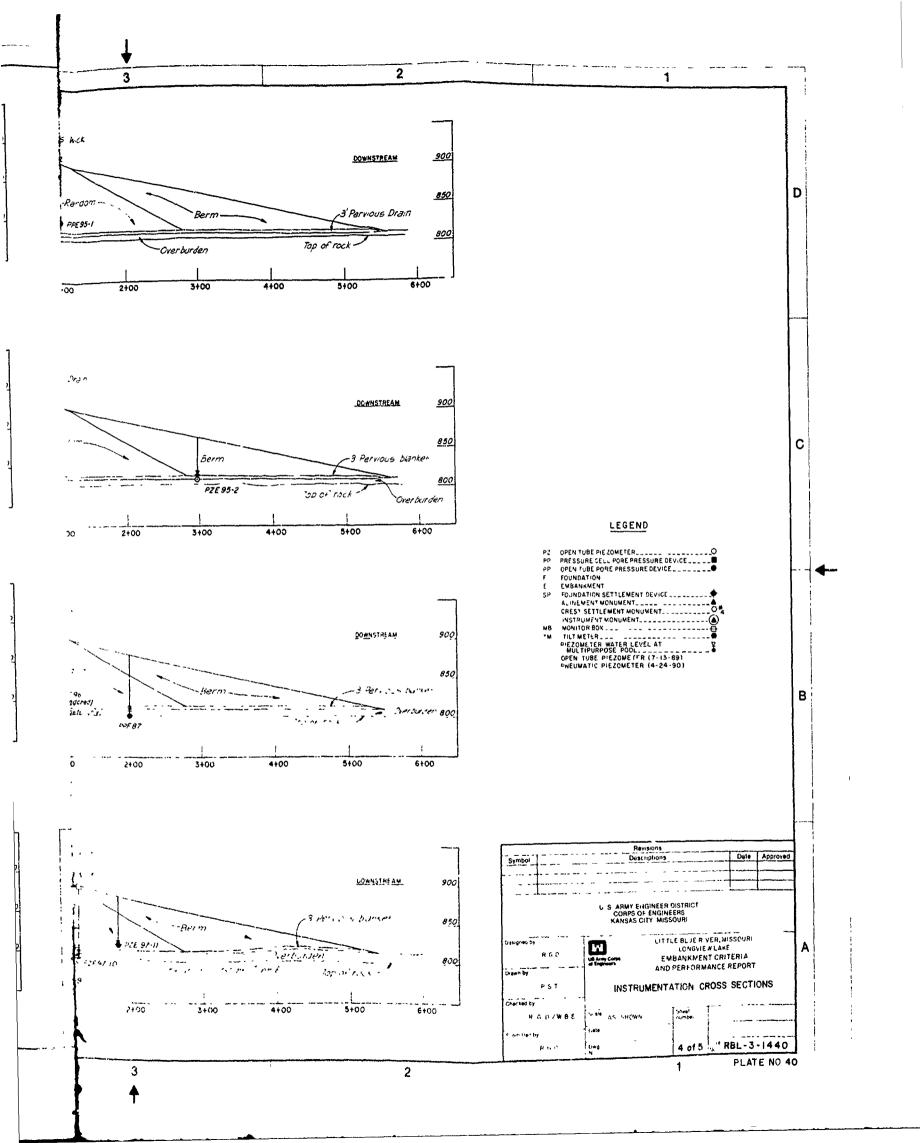


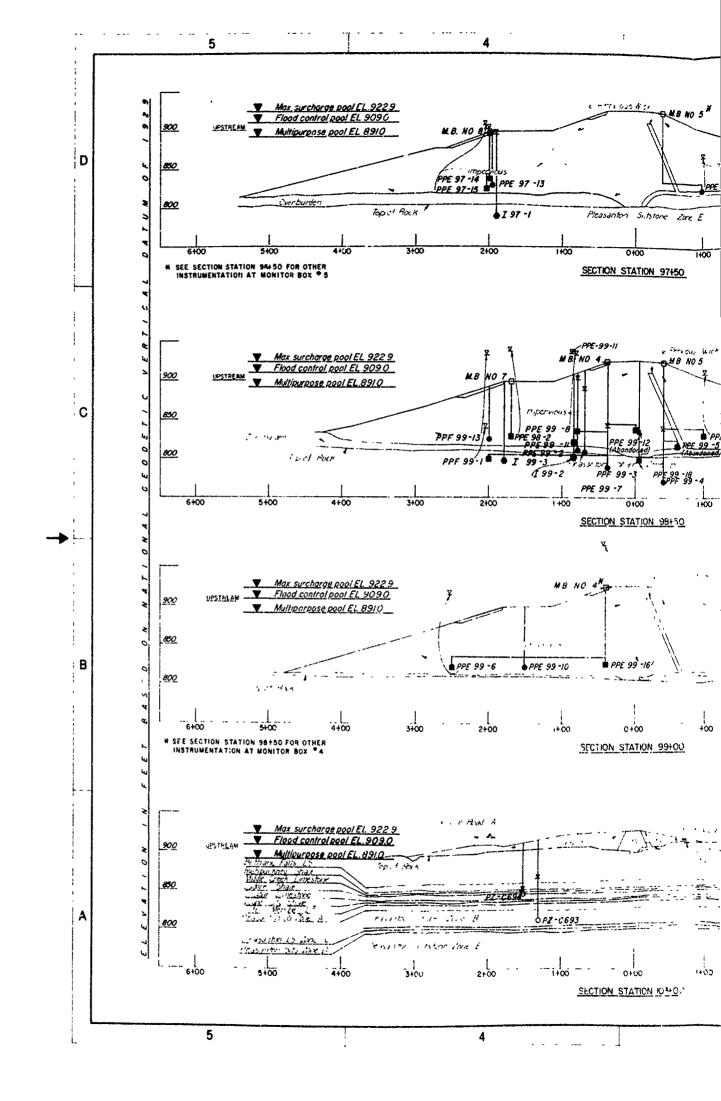


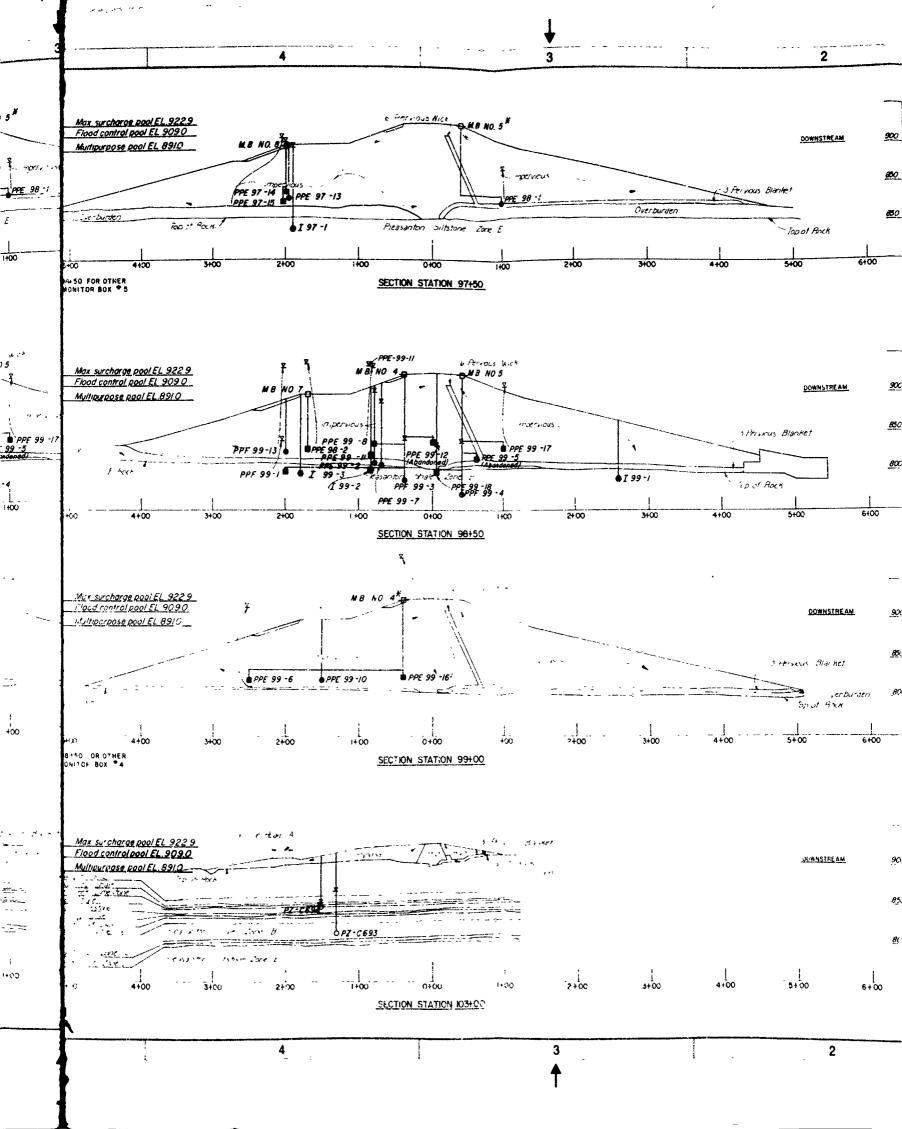


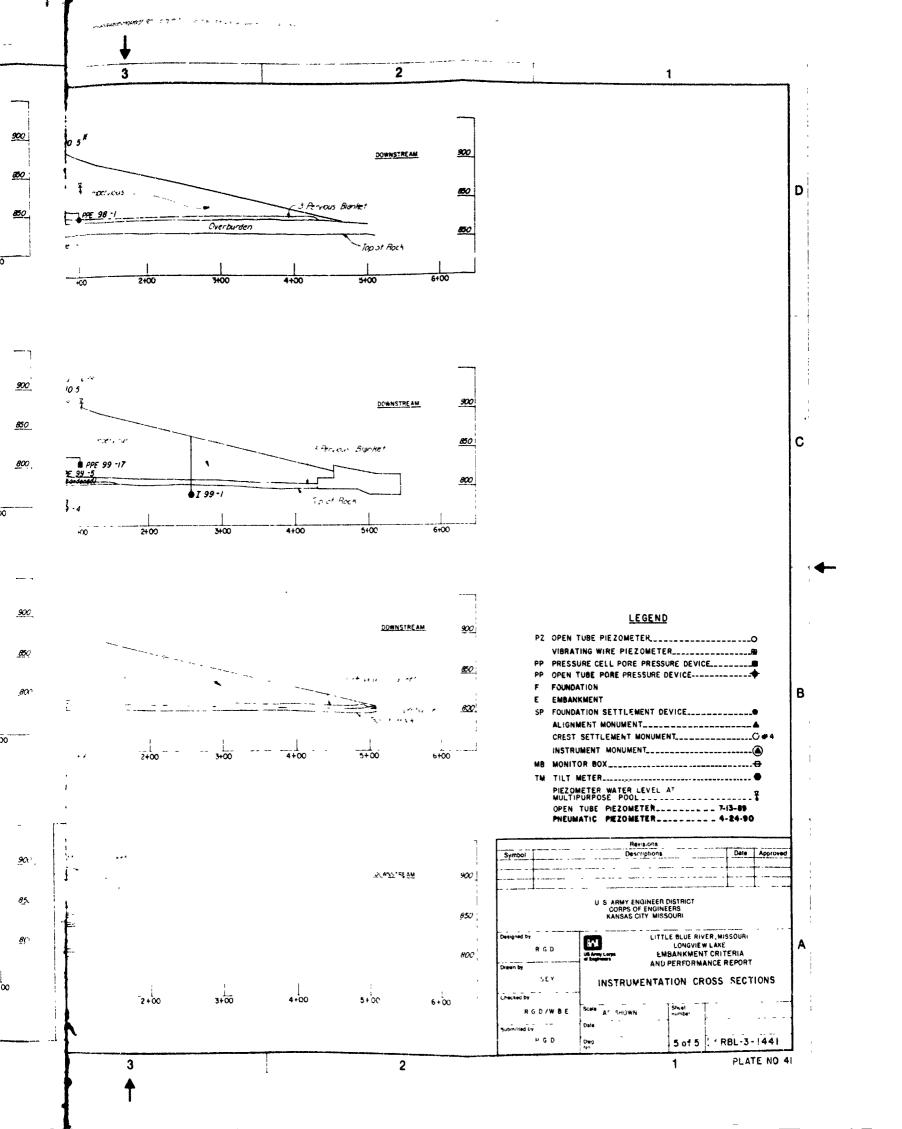


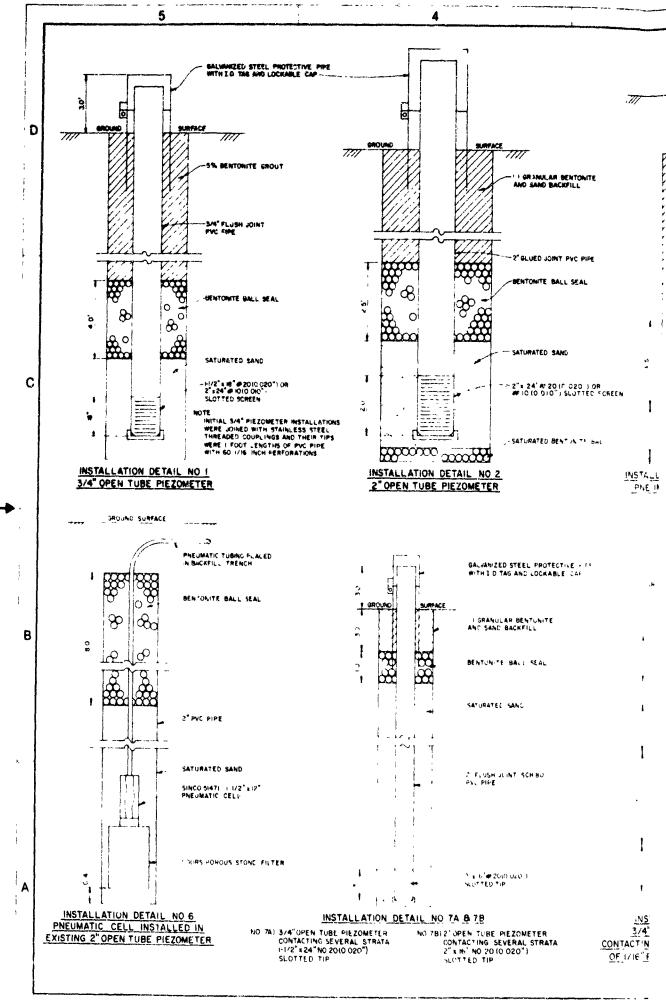


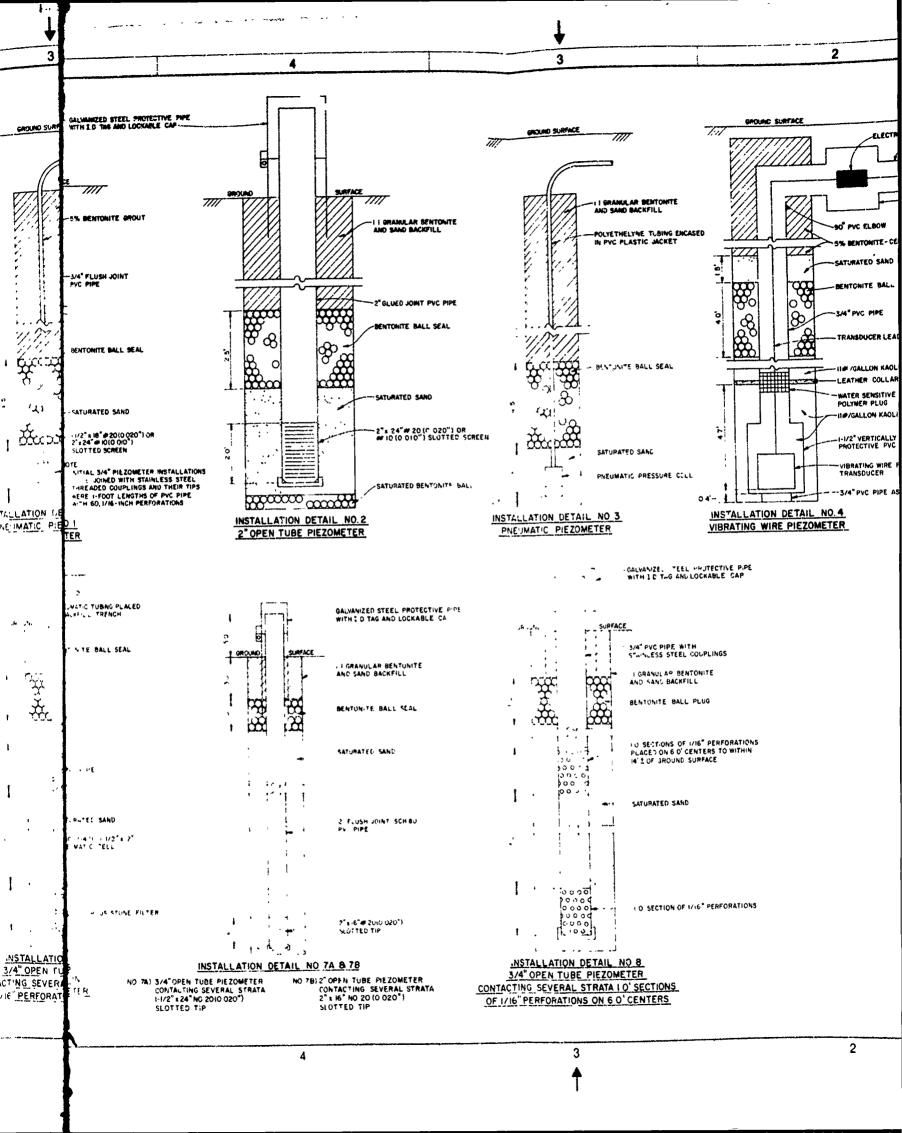


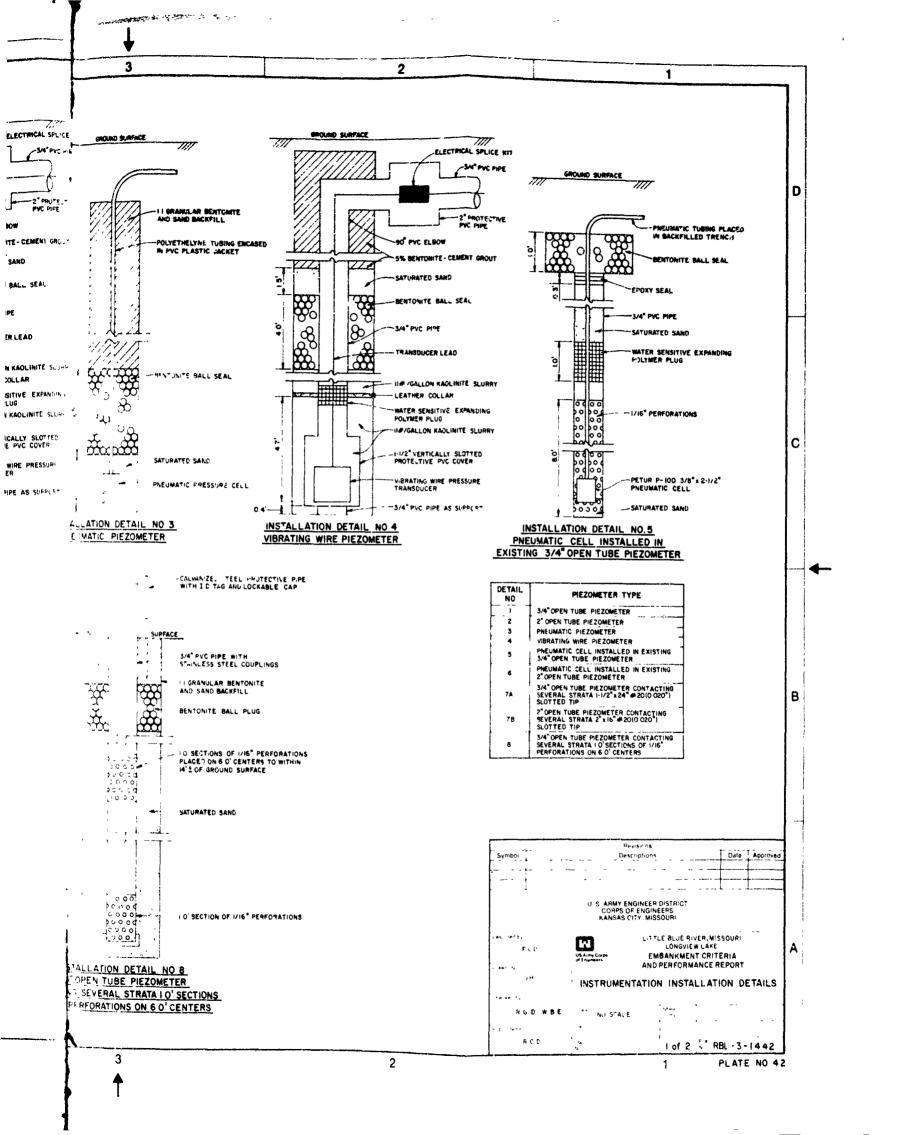


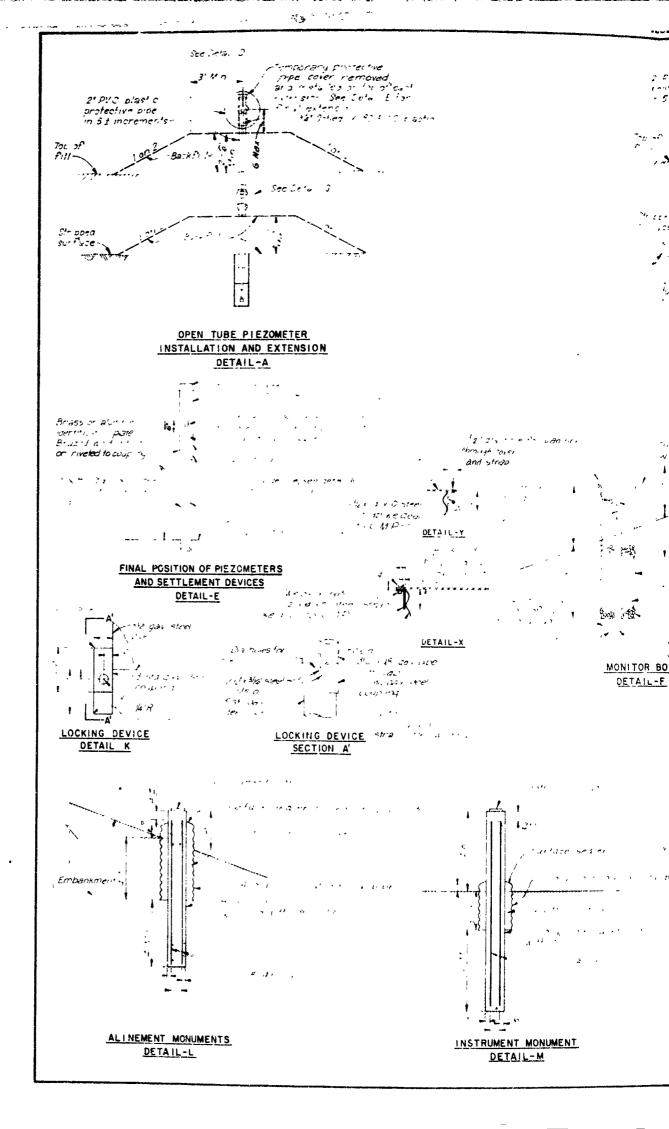


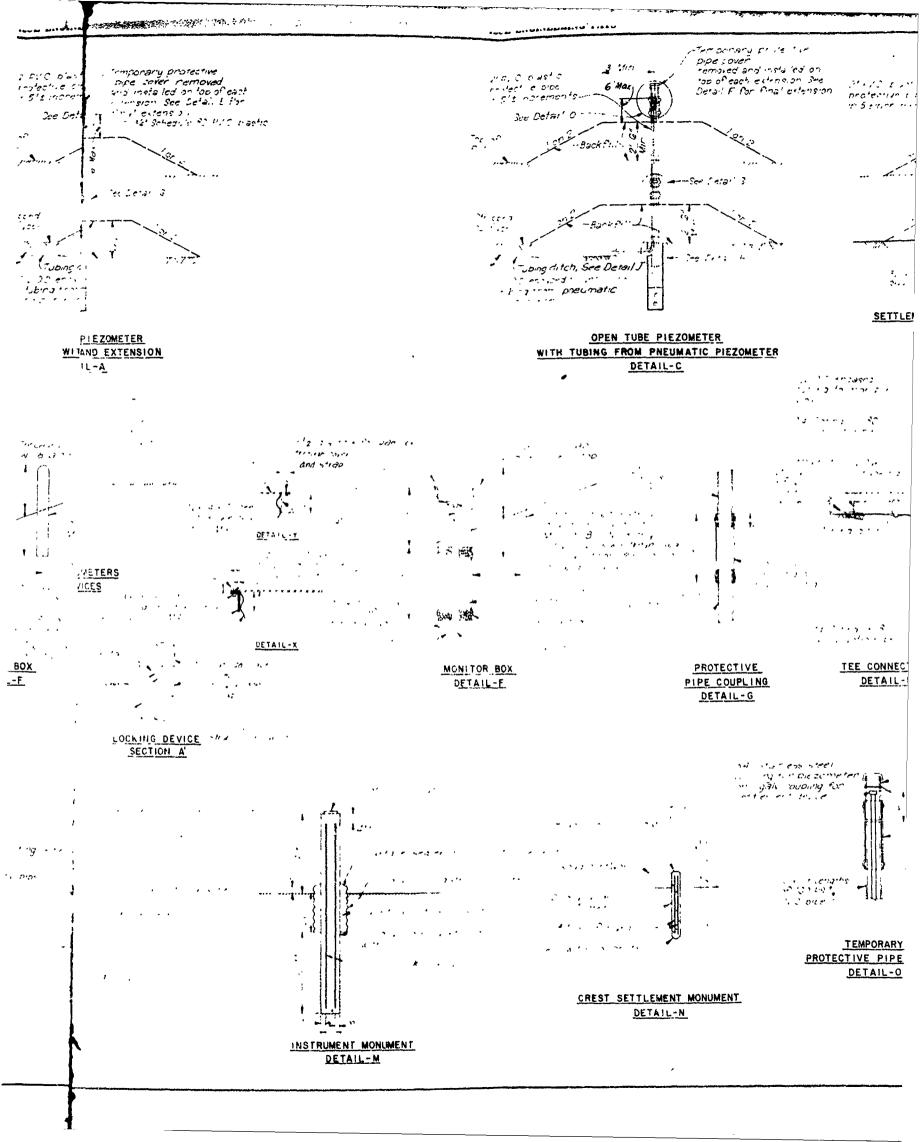


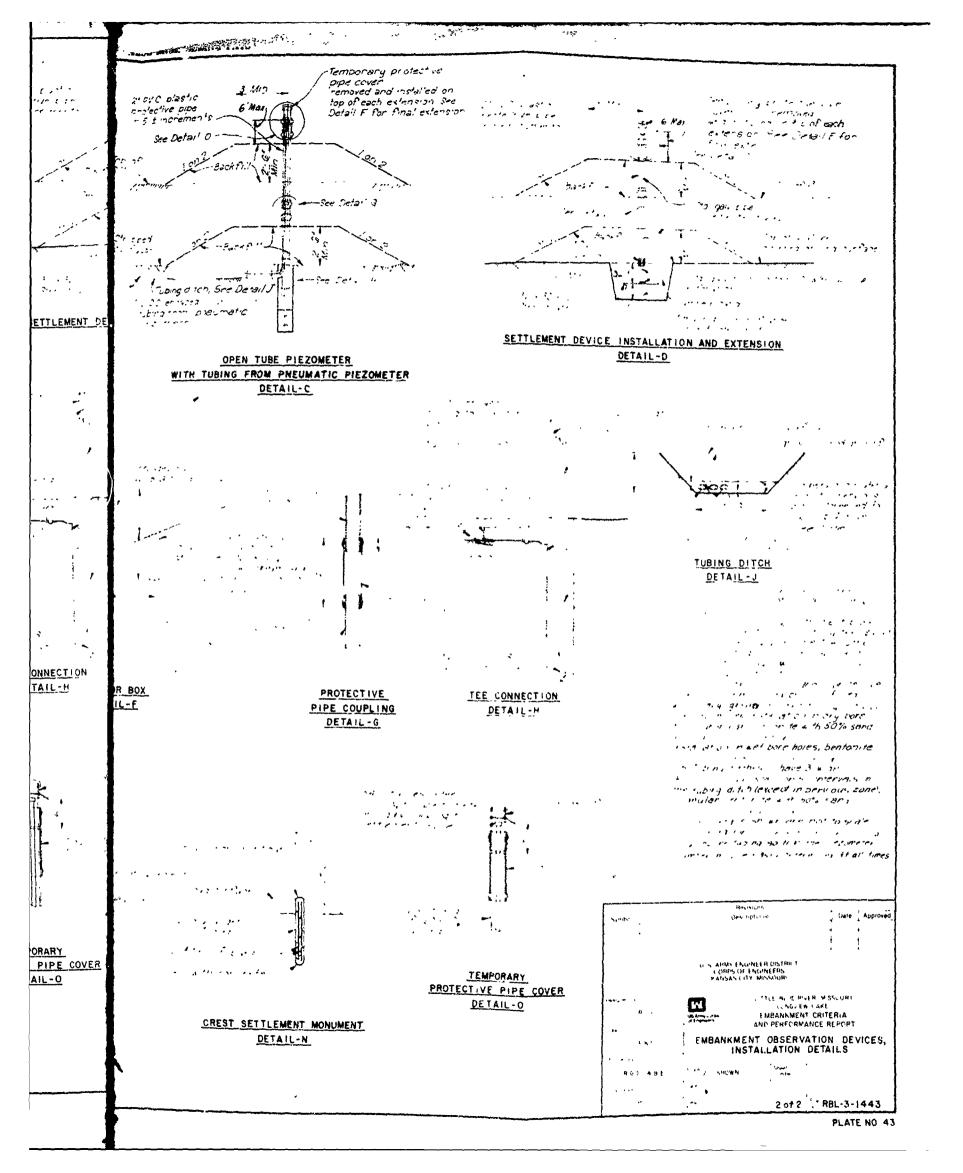


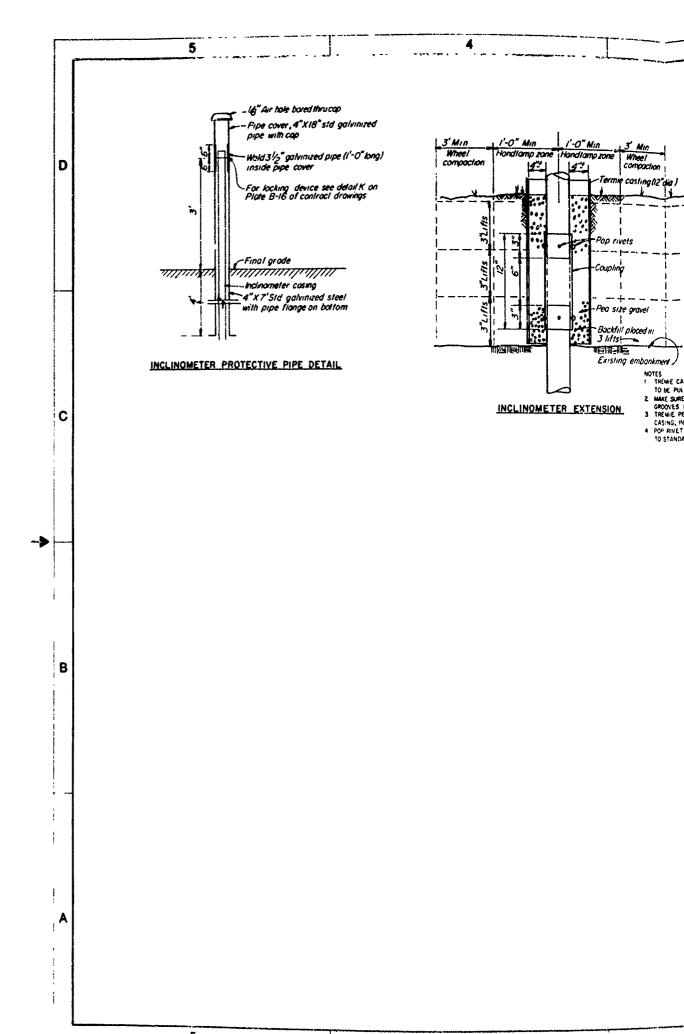








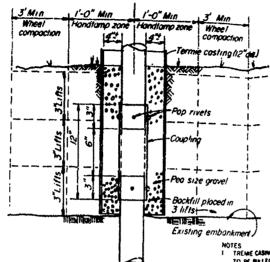




5

A

hole bared thrucap cover, 4"X18" std galvinized with cap 5 /5" galvinized pipe (1'-0" long)
pipe cover


cking device see detail K on B-16 of contract drawings

grode meter cosing Std galvinized steel pe flange on bottom

E PIPE DETAIL

S

REME CASING (12" DIA PLAS
DEE PULLED AS EXTENSI
AME SURE THAT THE FOUR
ROOVES IN UPPER AND LO
REMIE PEA SIZE GRAVEL I
ASING, IN AN OUTER PROT
DE RIVET UPPER AND LOWE
DISTANDARD COUPLING IN I

INCLINOMETER EXTENSION

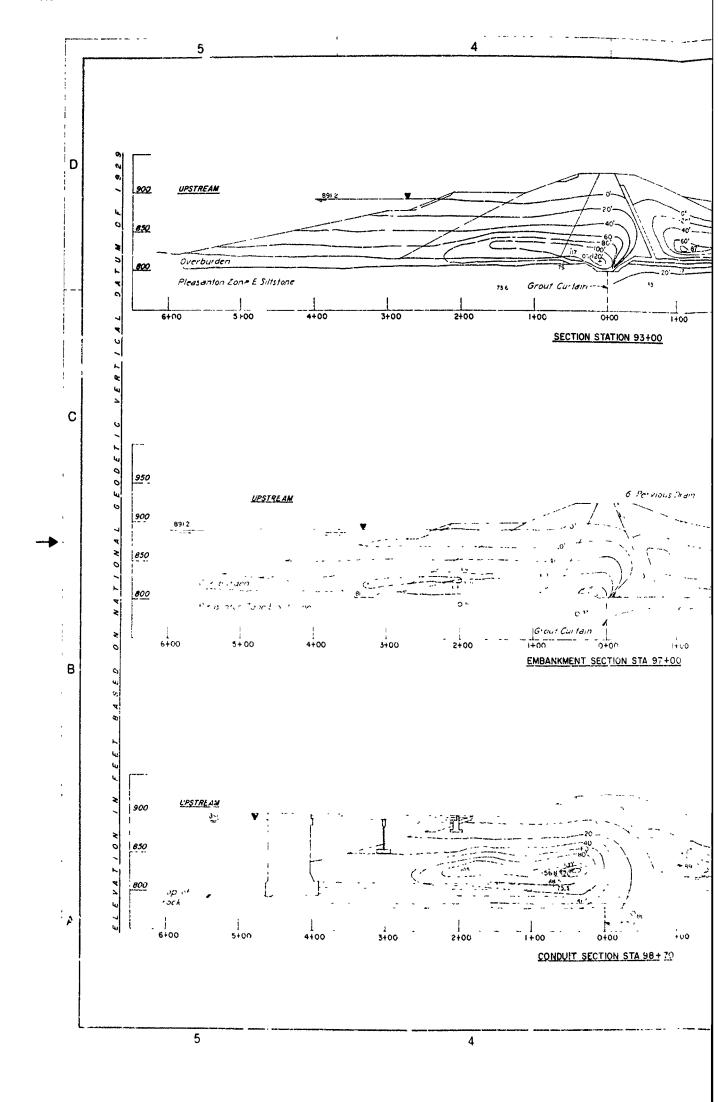
ODINAMENT /

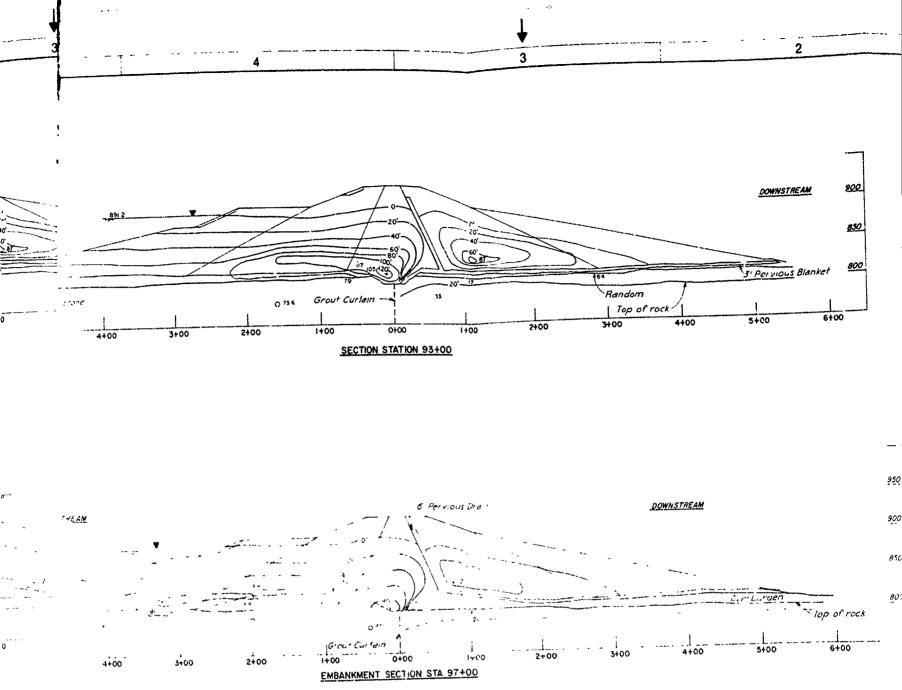
NOTES

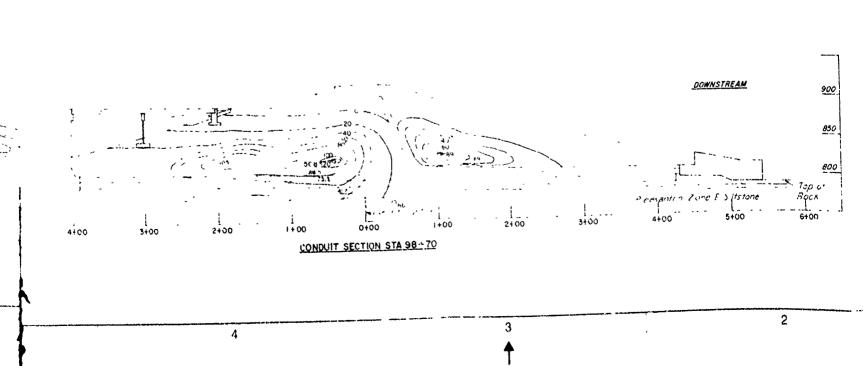
TREME CASING [12" DIA PLASTIC PIPE [BOHEDULE 40])

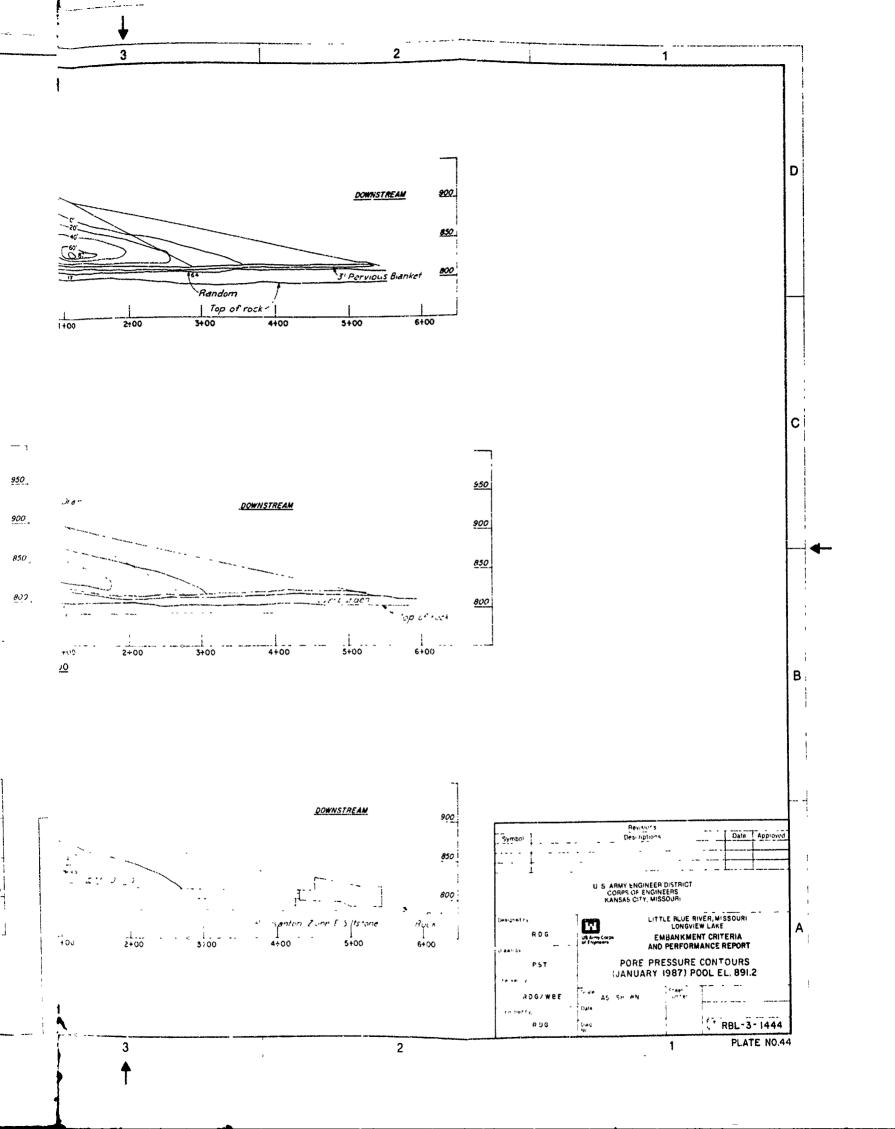
TO BE PULED AS EXTENSION PROGRESSES

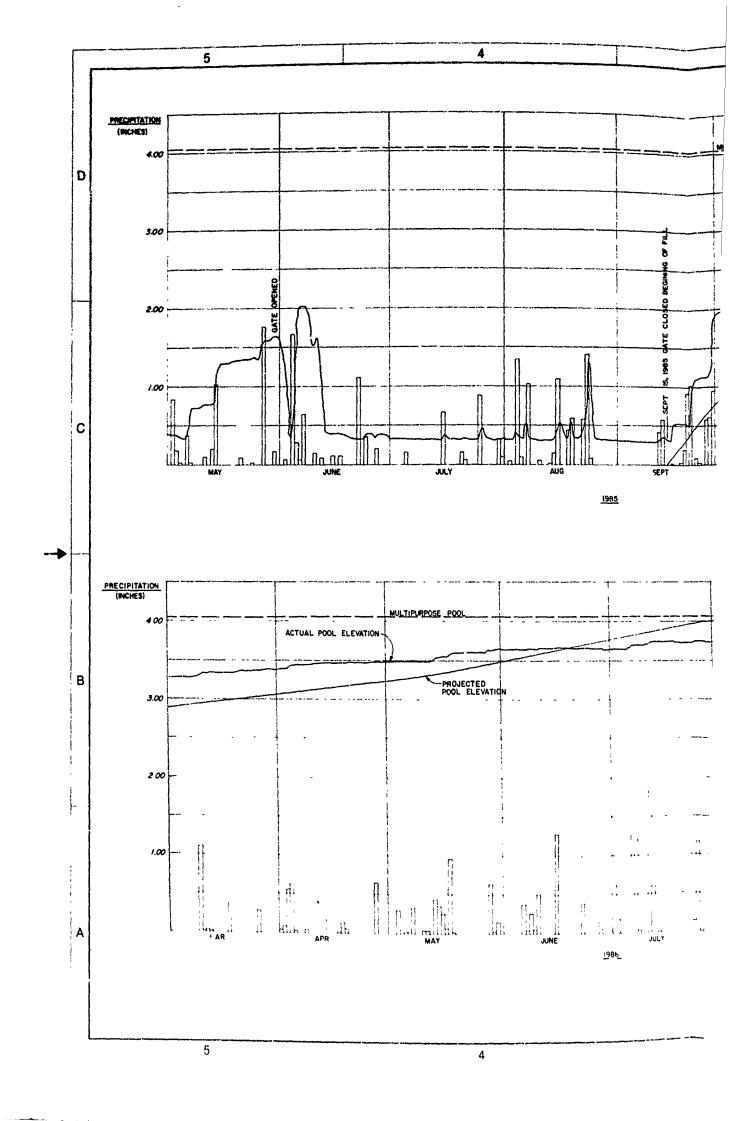
AMERISMETINAT THE FOUR INTERNAL LONGITUDINAL GROOVES IN UPPER AND LOWER CASING MATCH UP

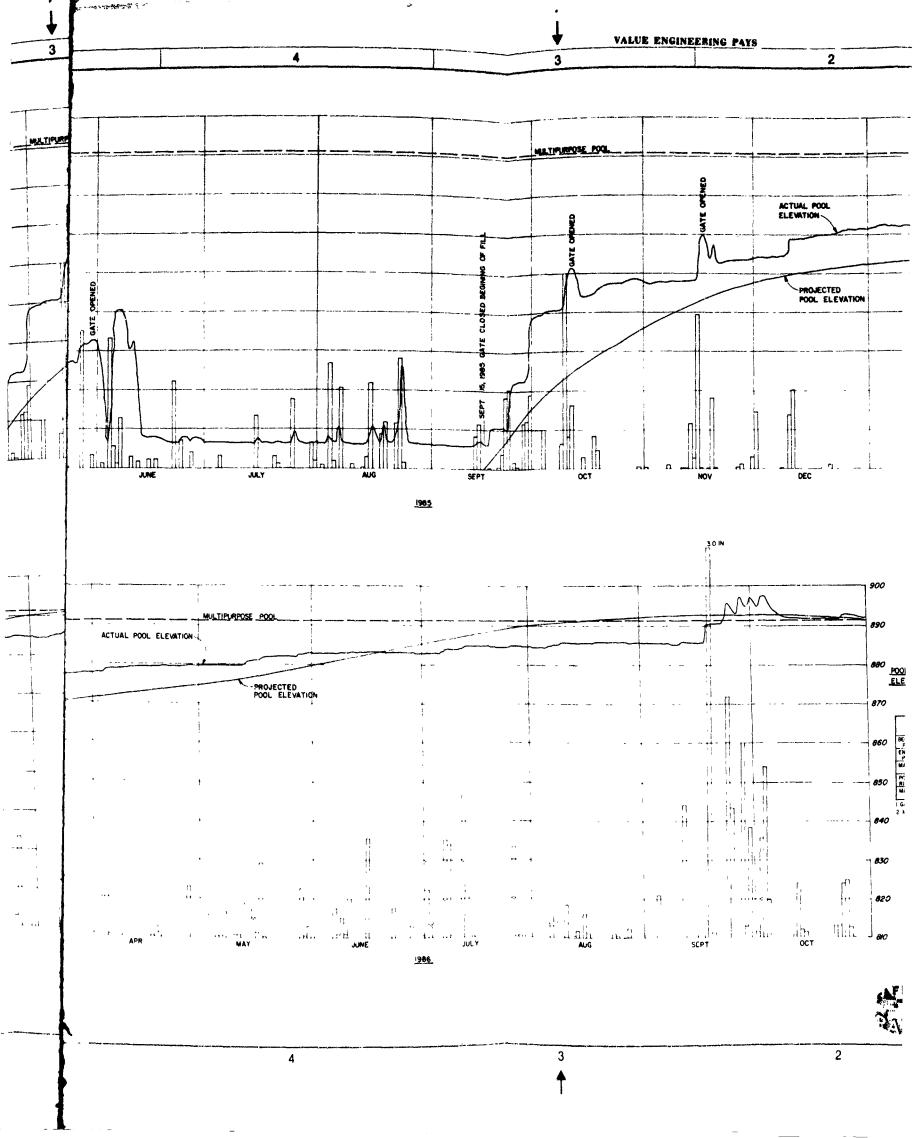

TREME PER SIZE GRAVEL AROUND INCLINOMETER CASING, IN AM OUTER PROTECTIVE PIPE

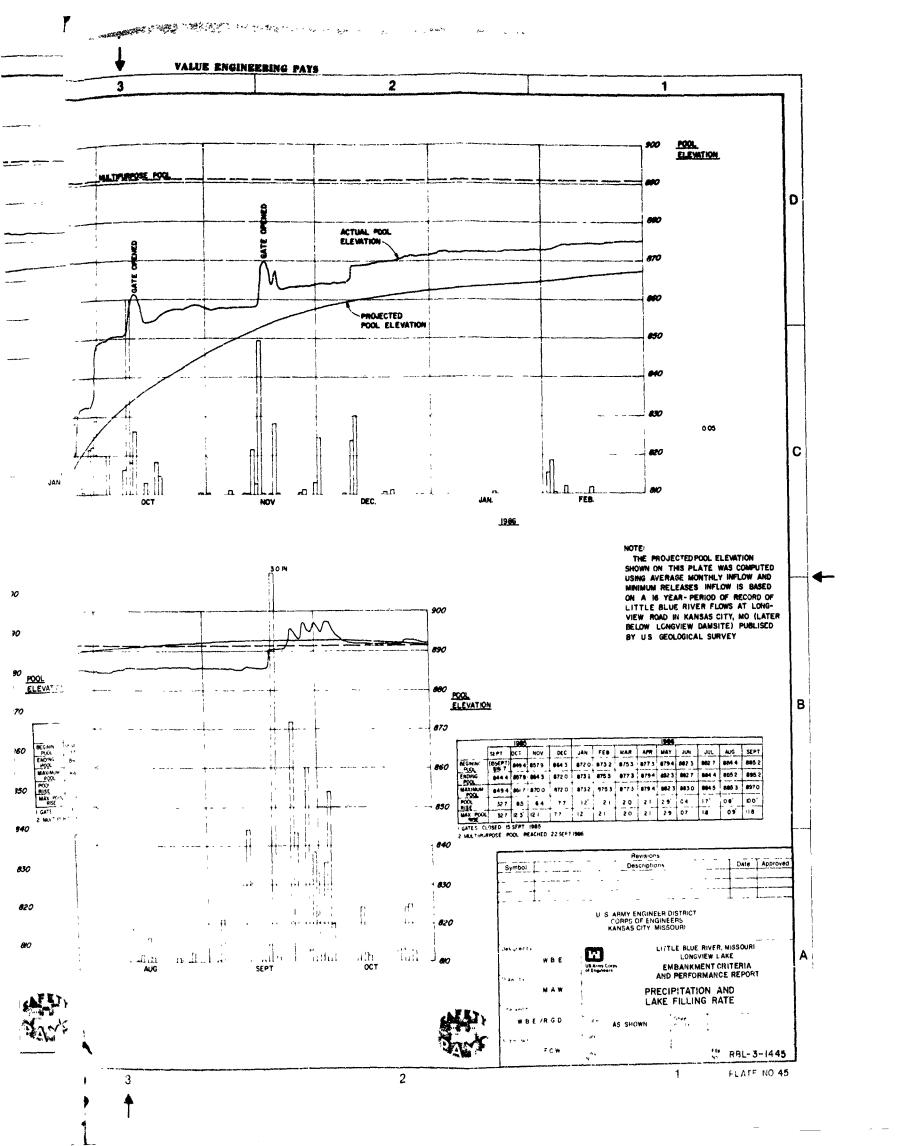

POP RIVET UPPER AND LOWER (INCLINOMETER CASING TO STANDARD COLIPLING IN FOUR PLACES

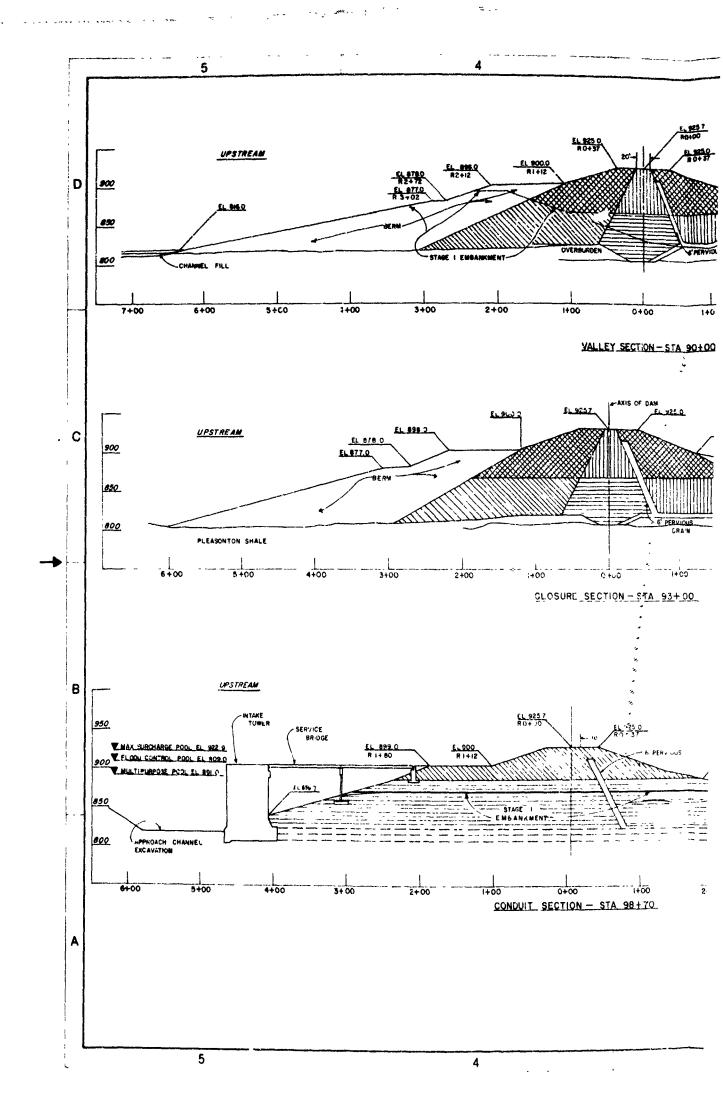

3

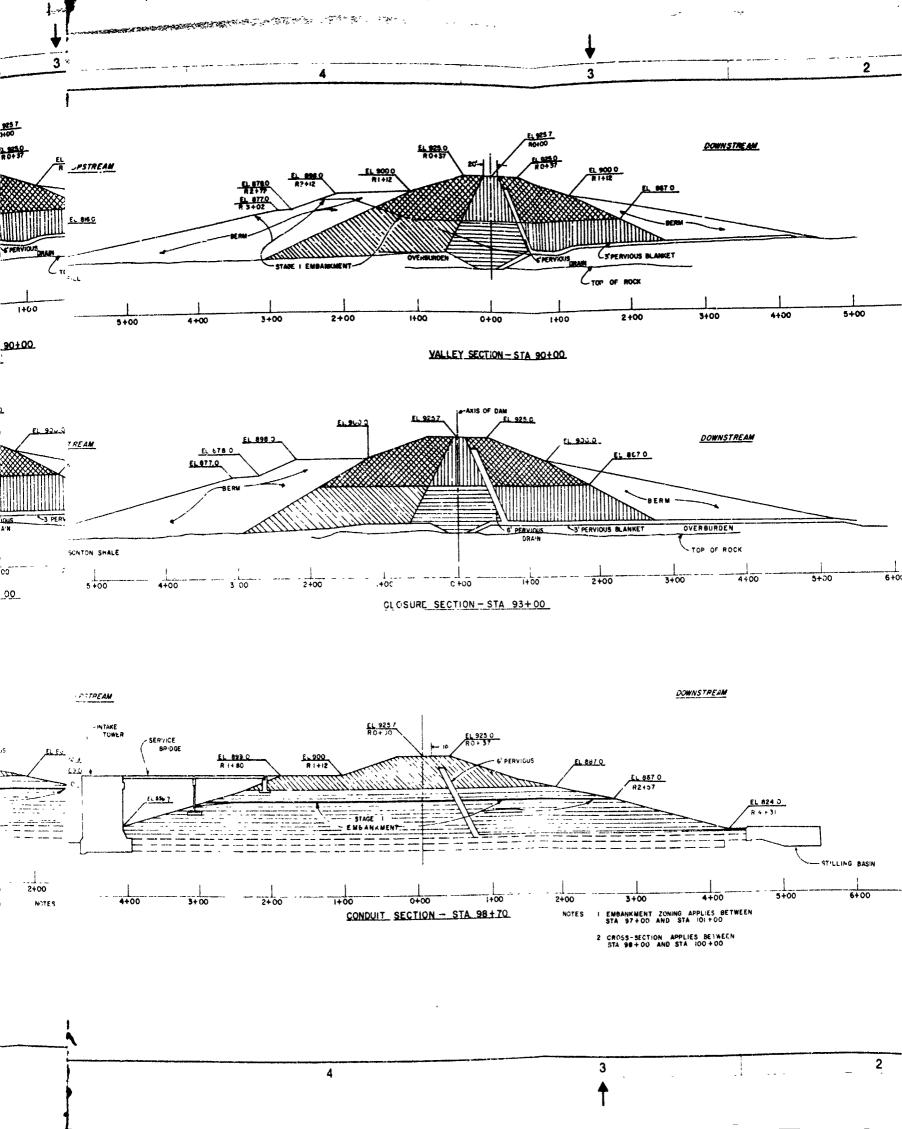

2

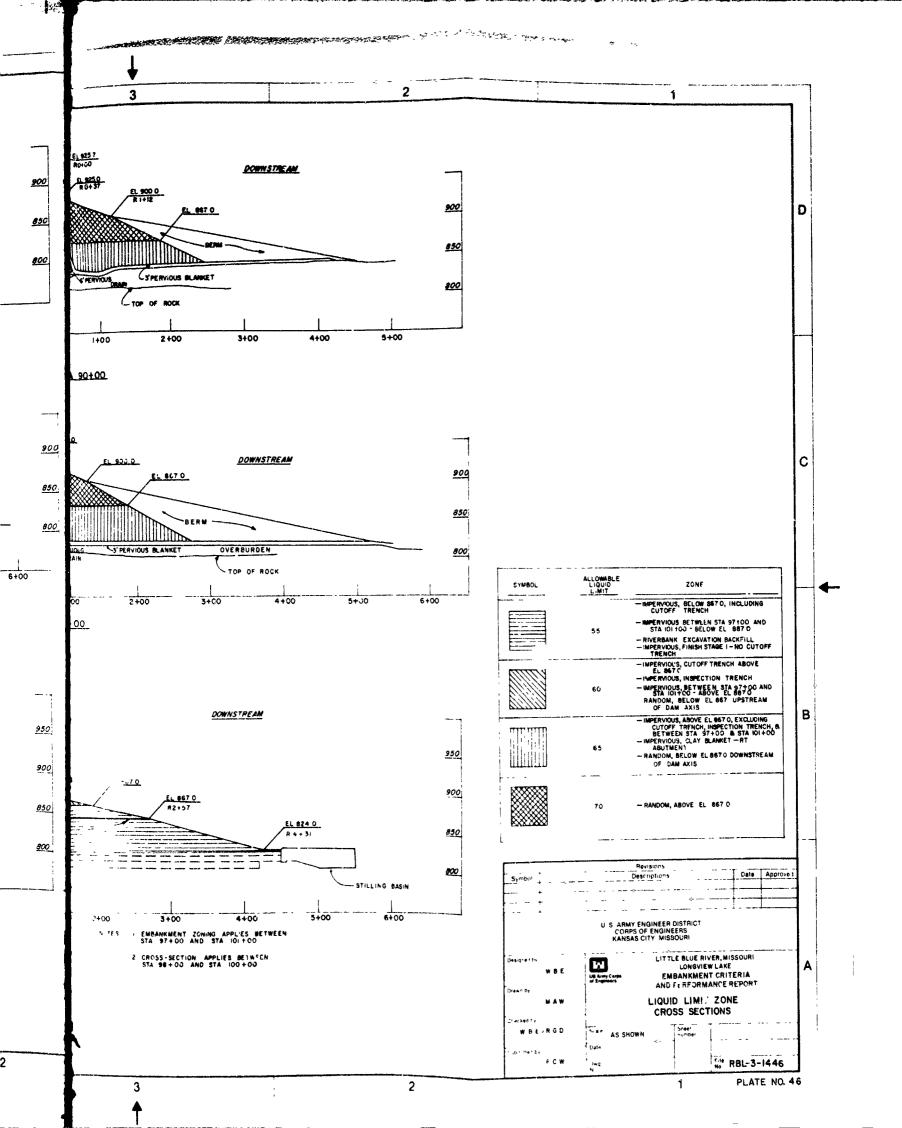

megan frittinger. France 3 2 D S SEME (12" DIA PLASTIC PIPE (BOHEDULE 40)) DIE PALED AS EXTENSION PROGRESSES ARE SWETHAT THE FOUR INTERNAL LONGITUDINAL ROCKES IN UPPER AND LOWER CASING MATCH UPPER SEE GRAVEL AROUND INCLINOMALTER AS 10, IN AN OUTER PROTECTIVE PIPE IN EVER PROFESSION OF THE PROF С В Revisions Date Approved Symbol U S ARMY ENGINEER DISTRICT CORPS OF ENGINEERS KANSAS CITY, MISSOURI Des goed by LITTLE BLUE RIVER, MISSOURI LA CAPTAGE CONTRACTOR LONGVIEW LAKE
EMBANKMENT CRITERIA AND
PERFORMANCE REPORT INCLINOMETER DETAILS AS SHOWN JUNE 1985 RBL-3-1696 3 2 1 PLATE NO 43A

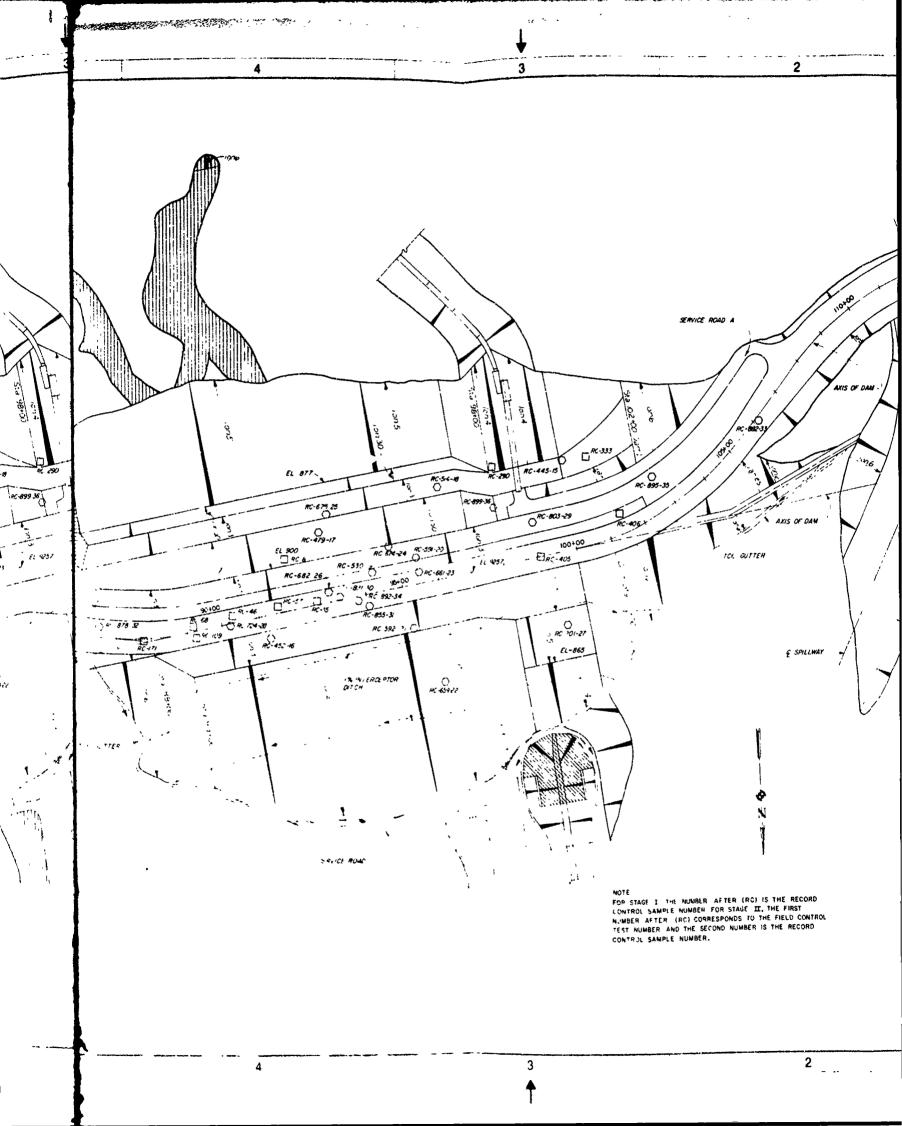


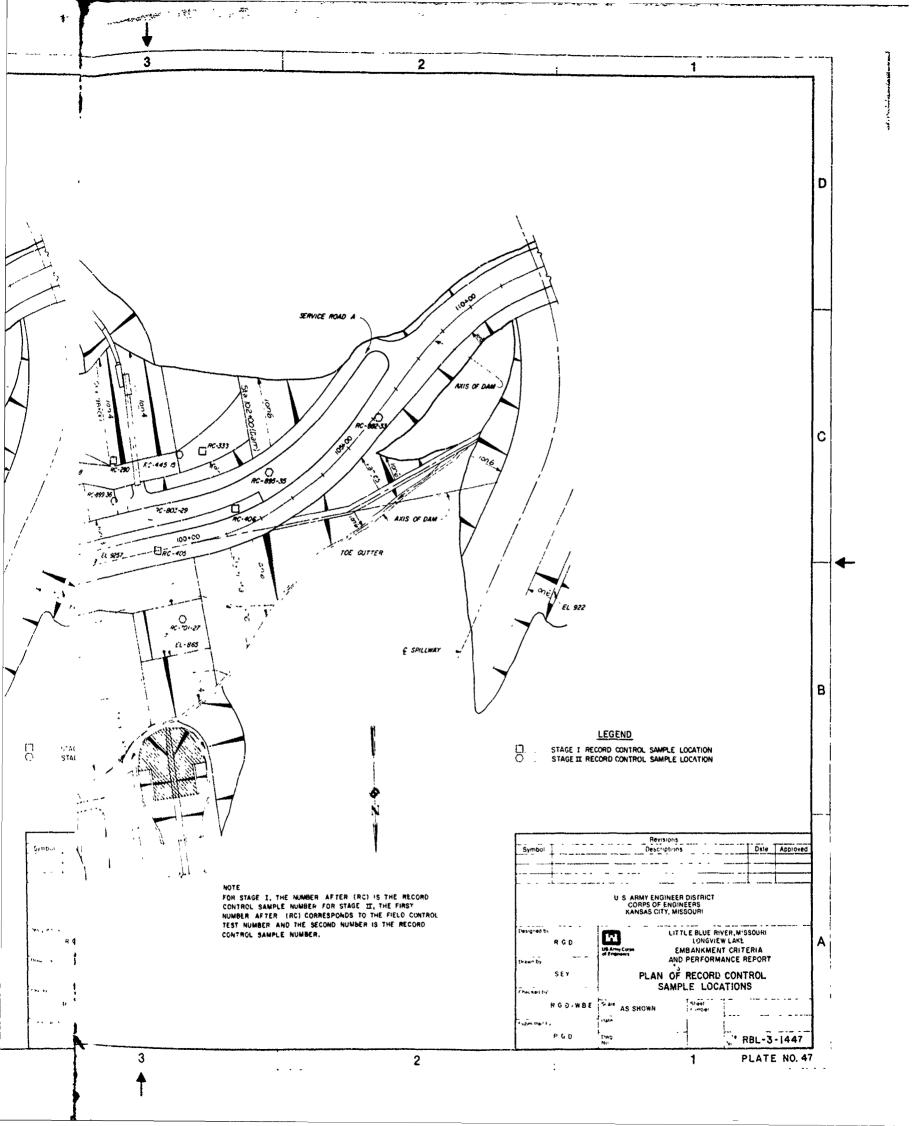


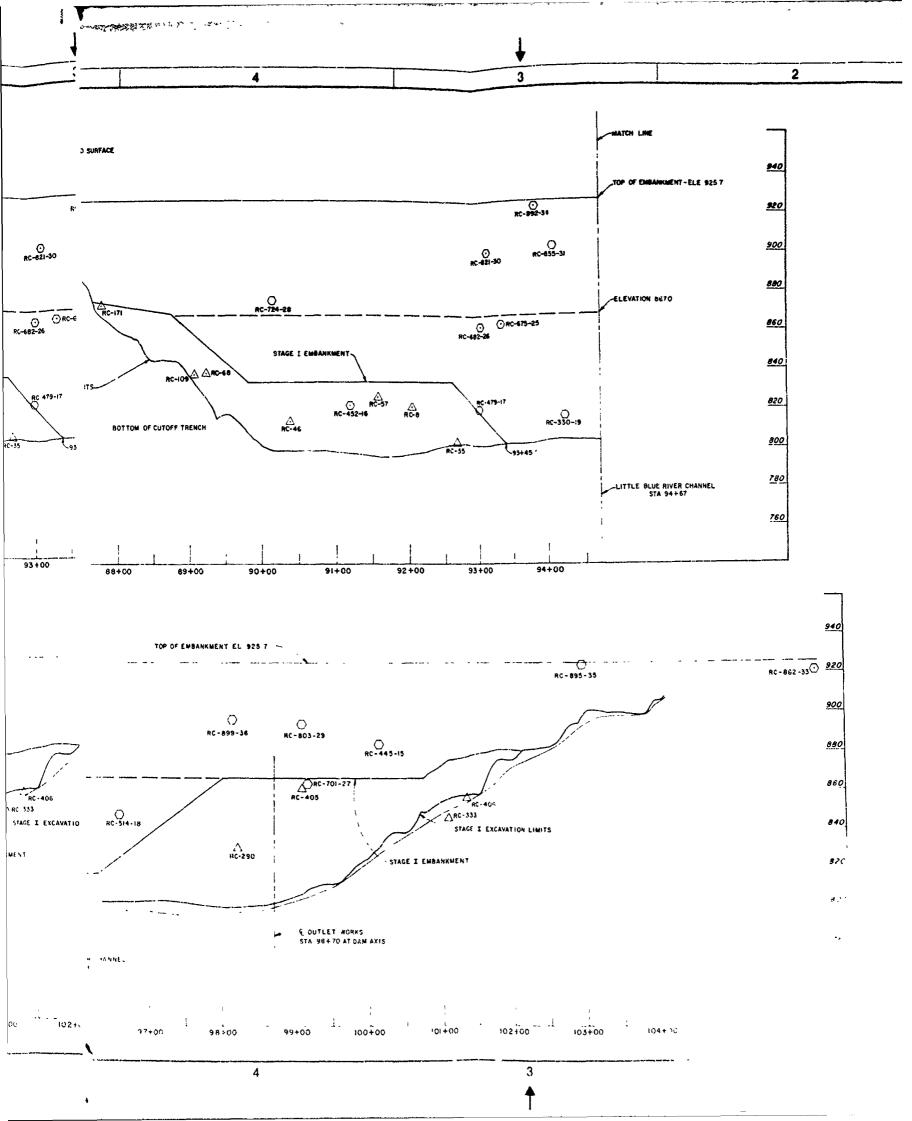


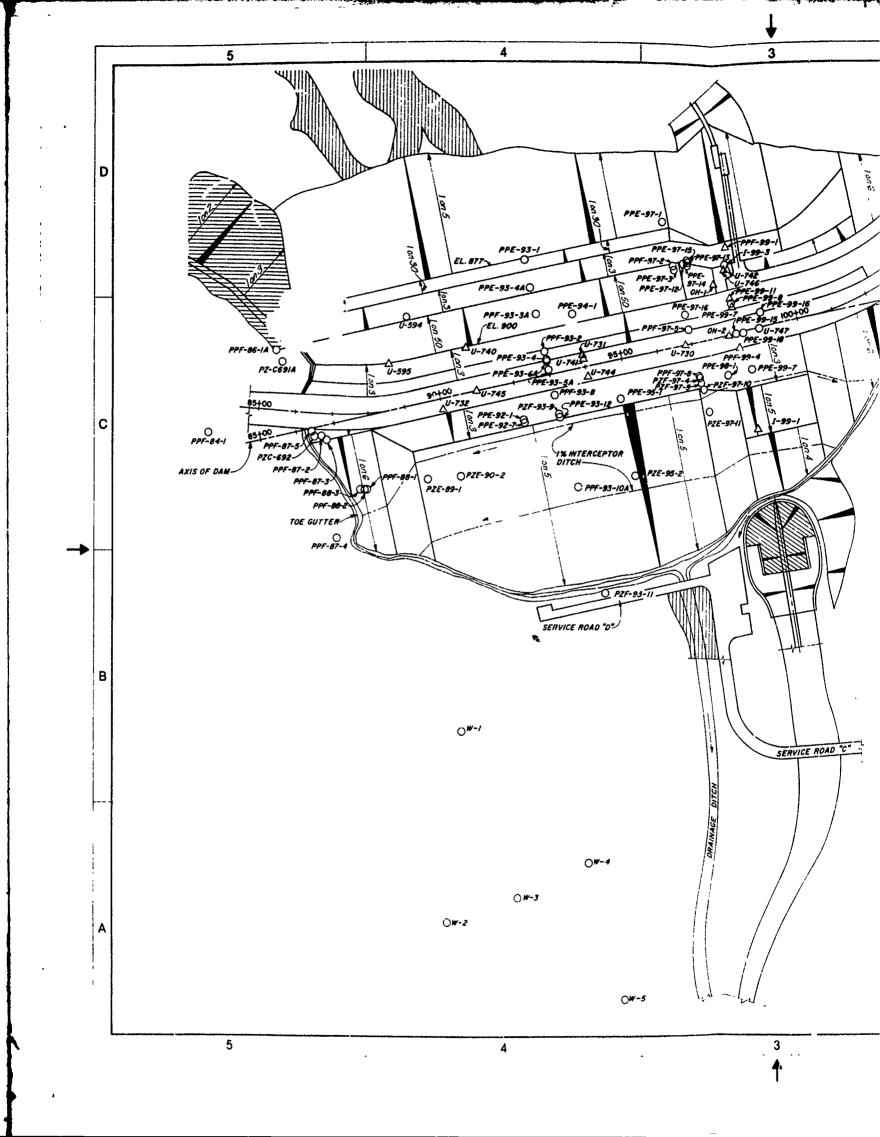


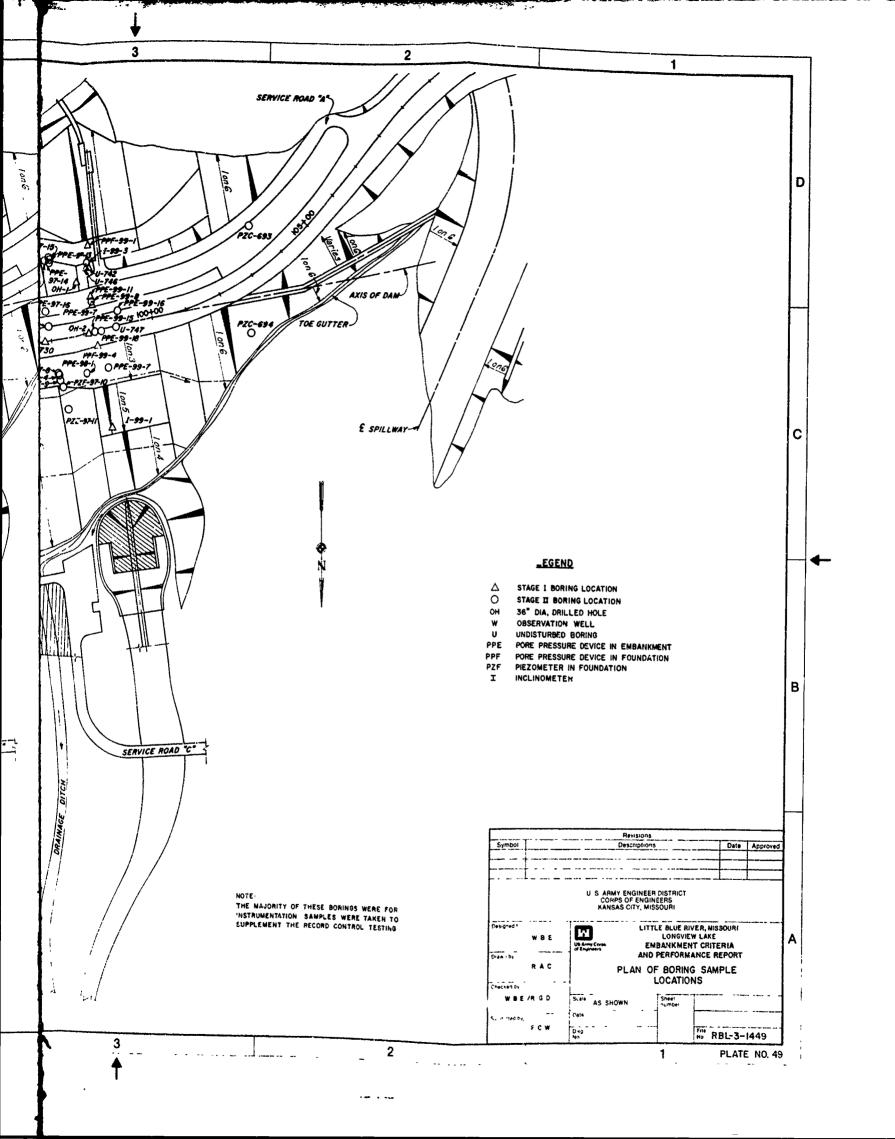












3 940 OF EMBANKMENT-ELE, 925.7 D ⊙ RC-892-34 920 C-655-34 900 ⊙ RC-821-30 880 ELEVATION 8670 ⊙ PC-662-2**6** ⊙RC-675-25 860 840 RC-479-17 820 AC-330-19 800 C 93+45 780 760 93+00 94+00 940 RC-882-33 920 LEGEND RC-895-35 Δ - STAGE I RECORD CONTROL SAMPLE LOCATION В O - STAGE II RECORD CONTROL SAMPLE LOCATION 900 880 860 333 GE I EXCAVATION LIMITS 840 Date Approved 820 800 U S ARMY ENGINEER DISTRICT CORPS OF ENGINEERS KANSAS CITY MISSOURI LITTLE BLUE RIVER, MISSOURI LONGVIEW LAKE EMBANKMENT CRITERIA AND PERFORMANCE REPORT 790 Α PROFILE OF RECORD CONTROL SAMPLE LOCATIONS 760 105+00 106+00 File RBL- 3-1448 PLATE NO 48 3 2

D

C

В

LIQUID LIMIT - 56 MIPERVIOUS ZONE STACE I SAMPLE SAMPLE NO. DEPTH SAMPLE STATION RANGE ELEV. 0+06% RC-35 92+65 805 5 817.0 90 + 35 0+15 % RC-46 927.0 RC-57 91+ 55 0+15 % e9+20 0+10% 836 5 RC-68 #35.0 RC- 100 89+20 0430% RC-122 44+50 0+15 % 815.0 RC-171 RC-197 374 75 0 406% 673 0 51 + 25 0+16% 811.0 RC-290 98+20 2+50% 832 0 RC-333 101+05 2+20% 847 5 RC-405 99+05 €. 864.0 RC- 406 101+32 0+55% 857.5 0H-1 98+00 1+45% 853.0 17.0 846 0 24.0 836 0 340 6 30.5 39.5 ٤ 98+12 647 8 19 2 0H-2 27.4 839.6 837.1 29.9 833 3 33.7 37.7 41.9 829 3 625 (U- 595 864 0 30 855.5 11 5 2+204e 822 7 30 816 7 90 815 2 105 2+56% 8575 95 1 -99-1 98 + 36 840 0 824 0 270 12 814 0 430 19 805 5 22 530 26 615 0+705 PPE-99-7 98+40 863 35 855 5 (1.5 837 П 295 879 14 37 5 821.5 18 45.0 810 5 23 56 0 PPE -99-11 98 + 35 20 8392 14 28 0

SAMPLE	STATION	RANGE	ELEV.
RC-530-19	94+25	0+50 %	815.0
NC-591-20	95 +50	0+65 %	828 O
RC-661-23	95+50	0+30 %	857 0

3

LIQUID LI	MIT 60	RANOOM	ZONE
SAMPLE	STATION	RANCE	ELEV
RC-8	92 +00	1+30 1/1	8217

•

8277

823 0

20

39 5

5

4

3

2 3 LIQUID LIMIT - 65 RANDOM ZONE STAGE E Liqu LIQUID LIMIT - 60 IMPERVIOUS ZUNE STAC SAMPLE STAGE I STATION RANGE SAMPLE DEPTH ELEV SAM SAMPLE SAMPLE DEPTH RC-659-22 SAMPLE STATION RANGE ELEV 2 +60 % 849.0 RC-E 90-502-21 95+10 1+10 % RC-899-5 96+00 825.5 1+50 % 896 0 RC-F AC-452-16 91 + 20 0+60% D RC-808-2 99+00 **622** O 0+10 % 991.Q U-7 PPE-92-1 92+00 1+70 % 028-8275 826.3-825.0 1+00 % 841.7 58.3 96+40 70 6-71 PPE-95-1 94+70 1+00% 16 9-19 3 266-29 3 72.3-72.8 862 2 **852** 0 U-7 U-747 99 +00 9210-9205 34-39 PPE-93-12 93+00 835 7 LIO LIQUID LIMIT - 60 RANDOM ZONE LIQUID LIMIT - TO RANDOM ZONE 57# STAGE IL STAGE I RC -RC -PPE SAMPLE SAMPLE SAMPLE STATION RANGE ELEV SAMPLE STATION RANGE ELEV, SAMPLE DEPTH RC-479-17 93+00 1+80 % 818.0 RC-855-3 909 0 NC-674-24 94+75 1+10% 861 5 C 86+50 0+22 % 919 5 PPE-94-1 94+00 1+40% 842.5-842 836.5-836 55-59 115-119 RC 102 + 90 0+90 1/1 924 0 PPE-92-1 92+00 1+00 % 898 7 13-18 8235-8230 245-250 6.3-6.8 893 7 8612 16 38 8-39 3 PPE -95-1 94+70 1+00 % 8805 0.0.5 869 7 II 3-11 6 9174-9169 6 4-6.9 10 5-11 0 9037-9032 20.1-20 6 BERM ZONE - NO SPECIFIED LIQUID LIMIT LIQUID LINIT - 65 IMPERVIOUS ZONE STAGE II STAGE II SAMPLE STATION RANGE SAMPLE ELEV SAMPLE SAMPLE NO DEPTH SAMPLE STATION RANGE ELEV В RC-675-25 93 + 30 2+20 % 864 0 RC-445-15 100+10 2+30 % 886 0 RC-514-18 96+56 2+35 4 853.5 RC-724-28 90 +20 0+05 Wa 8740 PPF-93-104 93+00 3+00% 825,4-824 9 20-25 RC-821-30 93+20 0110 9/8 9000 U-594 89+60 884 3.0 RC-882-35 106 + 15 0+08% 921 D 873 13.0 HC-892-34 93+75 0+10 % 923 5 SACK - COMPOSITE SAMPLE FROM SPENCER SEEP AREA U-745 ٤ 91+00 9180-9175 9080-907 164-169 # INSPECTION TRENCH Revisions Date Approved Symbol Descriptions U S ARMY INGINEER DISTRICT CORPS OF ENGINEERS KANSAS CITY, MISSOURI LITTLE BLUE RIVER, MISSOURI Designed by **1** EMBANKMENT CRITERIA AND PERFORMANCE REPORT Drawn by RECORD CONTROL SAMPLE SCHEDULE RDG/WEE AS SHOWN Submitted by Nwg 18 RBL-3-1450 ROG 1 of 1 PLATE NO 50 3 2 1

3 4 5 D DEPTH (FT) SAMPLE STAGE II , LIQUID LIMIT - 55 IMPERVICUS ZO (FT) 3 X X X RC-530-19 STAGE I; LIQUID LIMIT - 55 IN i X RC-561- 20 RC-661- 23 2 2 X X RC-35 × 2 2 X X × X RC-642-26 RC-46 X × RC-57 STAGE I, LIQUID LIMIT - 60 MANDOM ZON X 2 X X X RC- 68 C 2 X X X X RC - 109 2 X X X AC-B X 5 X X X RC-122 STAGE IL; LIQUID LIMIT - 60 IMPERVIOUS RC-171 2 X X × X 2 X X X AC-803-29 RC-197 5 X X X X X X RC-899-36 RC-290 U-748 70.8-71.1 1 2 X X 3 X X X X RC-333 72 3-72.8 1 X X X 34- 39 1 X X X RC-405 X X RC-406 1 X X STAGE IL , LIQUID LIMIT - 60 RANDOM OH-1 17.0 x
 RC-479-17
 2
 X
 X
 X

 PC-674-24
 2
 X
 X
 X

 PPE-94-1
 5.5-5.9
 1
 X
 X
 lx lx l x 240 x 340 |x | x 39 5 x x lх 115-119 1 X X X 0H-2 19.2 lх 245-250 | X X X 274 x x × 299 x STAGE IL, LIQUID LIMIT - 65 IMPERVIOUS 33 7 хх x RC-445-15 1 X X X X x x x 37 7 Ιx RC- 724-28 XXX x x x х 41 9 2 X X X RC-821-30 1-99-1 9.5 RC-882-33 2 x x x 170 X RC-892-34 27 0 64-69 2 X X 164-169 1 X В 43 0 53 0 615 PPF-99-30 X 10 5 PPF-99-4 X × 11 5 × 295 X 375 45 0 X 56 0 x x PPE-99-II_ 20 2 × U-595 30 11 5 5 3 4

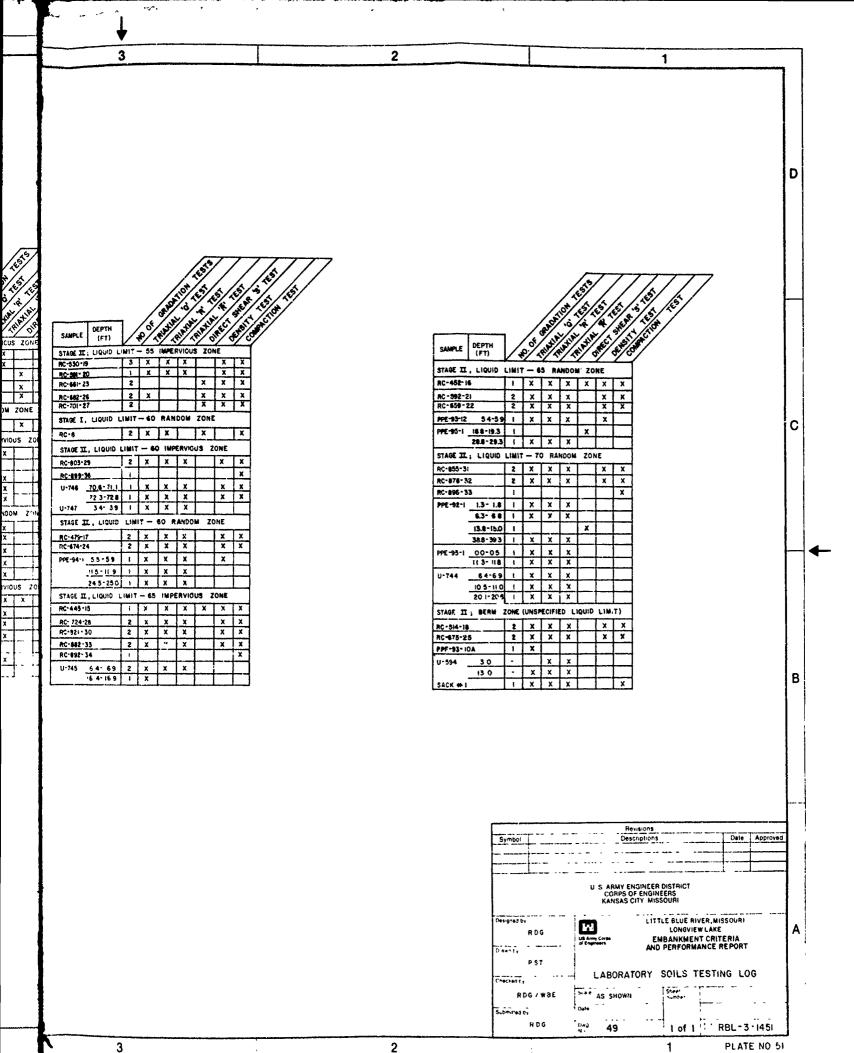


PLATE NO 51

DATA ON RECORD CONTROL SAMPLES

									LIQUID LIMIT		MPERVI	ous zo	NE.
						1		Т				EST	
HOLE	SAMPLE		CLASSI	FICATION	'	DR	Y DENSITY	\Y	WATER CONTEN				
NO	DEPTH	SYM	L L	P.L	P. I.	MAX.	INITIAL RANGE	OPT	INITIAL RANGE	PERCENT SATURATION	TAN	C T.S.F	TAN Ø
RC - 35		СН	65	22	43	972	968 - 971	23 5	266 - 274	97 - 99	0 052	1.06	
RC - 46		CL	40	18	22	105.2	106.4 - 107.5	16.5	199 - 202	97 - 98	0.096	1,00	<u> </u>
RC - 57	,	CL	48	16	32	105 0	1076 -1083	17 8	185 - 186	88 - 89		<u> </u>	<u> </u>
RC - 68		СН	50	20	30	97.4	985-987	212	240 - 241	91 - 92	0 070	1 25	
RC-109		CL	46	18	28	103 0	1073 - 107,8	190	189 - 191	90	0 016	215	
RC -122		CL	44	18	26	102.2	106 5 - 107 5	18 7	202 - 207	95	0	1 35	
RC-171	,	CL	46	19	27	1038	993 - 1010	18.8	748 - 259	100	0 035	1 25	<u> </u>
RC-197		CH	57	17	40	99 7	93 - 93 3	213	293 - 295	100	0 123	0.55	 '
RC-290		CL	43	20	23	105.3	1046 - 1049	187	216 - 219	99-100	0 044	170	
RC - 333		CL	45	25	20	1016	975 - 978	203	257 - 259	100	0 121	0.75	
RC - 405		СН	56	22	34	95 6	990 - 1007	243	23 6	92-96	0 155	123	<u> </u> '
RC -406		CH	56	20	36	97 7	105 7 - 106.1	22.2	206 - 208	94-95	0 070	2 38	
0H-1	170	СН	53	16	37	T	1048 - 1057		216 - 220	100	2.035	1 35	0 521
	240	CL	43	15	28		1072 - 1061	1	201 - 204	98-100	0 035	1 55	1
!	340	CL	41	16	25		995 - 1036		215 - 238	92-95	2 270	240	0 53
لـــــا	39.5	CL	40	16	24		102 8 - 104 4		205 - 222	93-97	0 070	0 40	0.53
OH 2	192	CL	48	16	32		105.7 - 107 9		189 - 197	92 - 96	0 167	115	0 46
1 1	27 4	CL	36	18	16		1066 - 107 3		183 - 187				0.58
1 1	29 9	CL	39	18	21	1	1069 - 107 8		194 - 201	93 - 97			0.57
1 '	337	CL	41	16	25		110 2 - 110 9	1	188 - 190	100	ł		0 57
'	377	CL	32	16	16		1130 - 1150	1	164 - 171	98-99	0 456	1 45	0 68
l'	419	CL	43	16	27	1	1020 - 1023		227 - 230			0.75	0 57
u - 595	30	СН	53	17	36		1008 - 1018	I	231 - 234	94- 95			0.48
·	11.5	l cu	45	17	28	<u> </u>	108.6		175	86			
PPF -99-1	3 C				T		912 - 945		260 - 271	89 - 97	T	T	
ĺ '	90		1			1	100 8 - 105 4		19 8 - 213	90-94		1	'
i '	105	l	l	l	İ	1	1024 - 1044		217	94-99			
I-99-1	95		1	1		1	1023 - 1051		2:3 - 219	93 - 98	0 035	1 50	Ì
	170	CŁ	46	17	29	1	1011 - 1039	ļ	223 - 240	97 - 98			
	270				ĺ		103 2 - 107.8		185 - 210	90-93	}		
	430	ر ا	41	15	25		106 5 - 1074		198 - 204	95-99	0 100	0.75	0 60
1	1	, ,	1 7	'*	•	l	1039 - 1043		23 8 - 23 9	1	1		
	53 0	l cL	41	14	27		1024 - 1103		182 - 231	96-100	0 315	0 40	0.46
	T	 	-+	1	+	1	991-1034	1	215 - 22.0	92 96			0 41
PPC-99-4		 	+		+		1000 - 1007	+	221 - 225			+	+
PPL-95"	115				}		1000 - 1016	· ·	233 - 242	1			}
1		1	1	l			1064 - 1087	ļ	189 - 191		1	ļ	
	29 5				1				203 - 214	1	l l		0.5
ĺ	375	CL	33	17	16		1049 - 1073		203 - 214	97-98	1	1	1
	450	1					104 7 - 105 0			"			
	56.0	CŁ	48	17	31		1042 - 1054		198 - 210	96-98			_1.
		-											

4

NOTE: EXCEPT FOR THE ATTEST, ALL SHEAR STRENGTH PARAMETERS PROVIDED ON THE SUMMARY TABLE ABOVE WERE DERIVED FROM A BEST FIT TANGENT 1 THE THE TEST-EFFECTIVE STRESS STRENGTH PARAMETERS WERE DERIVED FROM THE POINTS PLOTTED AS DESIGNATED BY THE CORRESPONDING MOHR 5 DIAGRAM

* SUSPECT TEST

5

5

D

С

В

4

RECORD CONTROL SAMPLES

NE

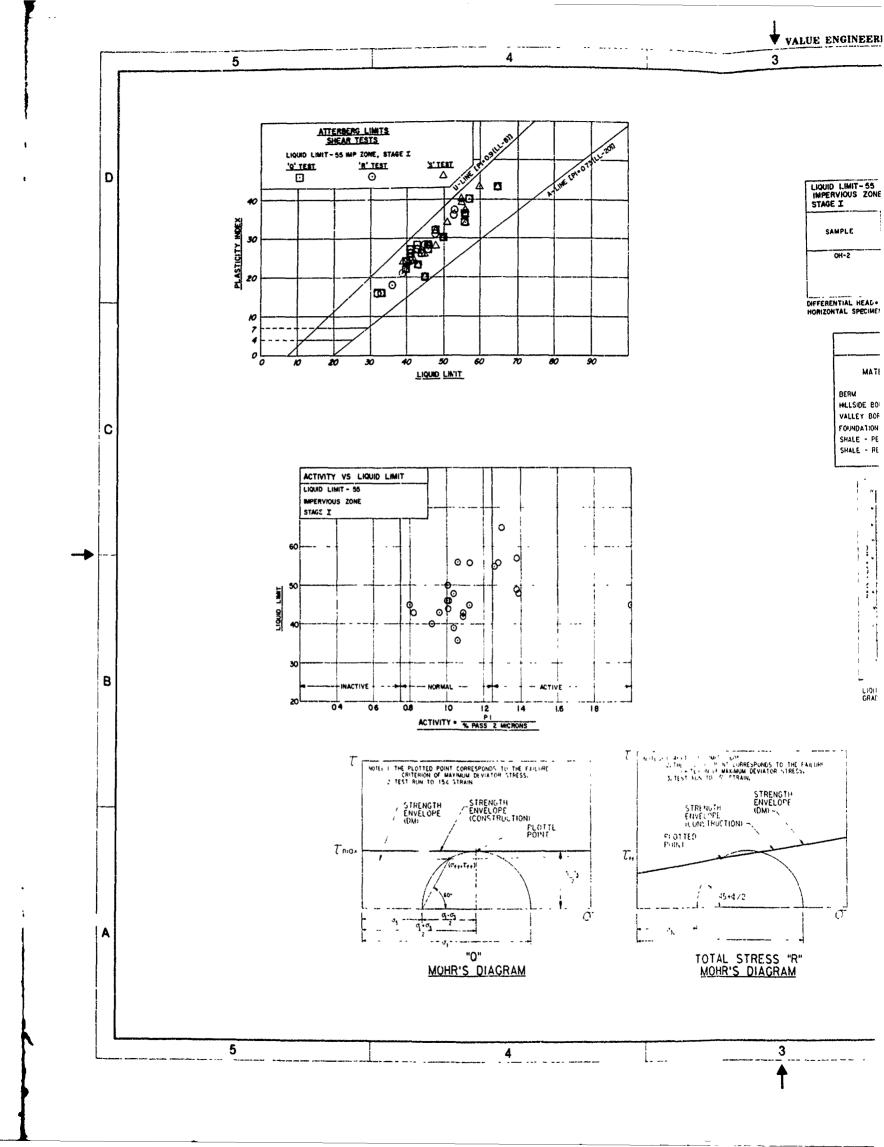
"R" T LOUID LIMIT - 55 IMPERVIOUS ZONE

manders const. Miles the same of the same is the same in the same is the same in the same in the same is the same in the same in the same is the same in the same in the same is the same in the same

K1	TOOL LIET CO.											
TAN Ø	TER (ONTEN	7	*Q* T	EST	" ल" T	EST	"R" T	EST	"S" T DIRECT		
- "	NITIAL R	ANGE	PERCE!	TAN	C T.S.F.	TAN	C T.5 F.	TAN	C TSF	HAT	C T S. F.	
	266 -	274	97 - 99	0 052	108			0 213	0 50	0 436	0	
	199 •	202	97 - 58	0.026	1 00			0.306	0 70	0,597	0	
	185 -	M 6	88 - 89					0 268	125	0 615	0	
	240 -		91 - 92	0 070	1 25			0 194	0.58	0 538	0	
ļ	189 -		90	0 016	215			0 374	0 55	0 592	0	
ļ	202 -	207	95	٥	1 35			0 202	1 23	0 634	٥	
	248 -	25 9	100	0 035	125			0 259	0 30	0 634	0	
 	293 -	29 5	100	0 123	0 55			0 277	0 01	0 580	0	
	216 -	219	99-100	0 044	170			0 296	0 30	0 630	۰	
ļ	257	25.9	100	0 (2)	0.75			0 287	0 53	0610		
0.531	23 6		92-96	0 155	123			0 144	, 13	0 534	0	
0 521	205 -	20 8	94-95	0.070	2 36		<u> </u>	0.269	9.75	0 566	0	
0 532	216 -		100	0 035	1 35	0 521	0 19	0 335	0 25 0 23	ļ		
0.532	201 -	- 1	98-100	0 033	1 33		0#	0 364				
0 462	215 -		92-95	0 070	040	0 532	0.14	0 287	0.08	l	ŀ	
0 589	205		93-97					0 296	0 25			
0.573	189	- 1	92 - 98	0 167	115	0 462	0.42	0 224	0 88 2 00			
0.577	183 -	201	93 - 97			0 589	0	0 321	0 25	<u> </u>		
0.68-		190	100			0 577	0.08	0 335	0 45	İ		
0 5 7 7	•	17 1	93-99	0.456	1 45	0 687	0 30 *					
0 488		230	98-100	C 437	0.75	0 577	0 23	0 781	0 25			
	231		94- 95			0 468	0 20	0 274	0 45			
	17.5	• • •	86				-			ļ		
	260 -	271	89 - 97							0 600	υ	
	1	213	90-94							0 542		
	21.7		94-99		İ					0 433	0	
1	213 -	219	93 - 98	0.035	150					0 490	0 27	
	223 -	240	97 - 98				}			0 490	0	
3 60 ₁	185 -	210	90-93							0 52	0	
li	198 -	204	95-99	0 100	U 75	0 601	010	0 402	0.50			
0 488	238 -	239	100							0 568	٥	
0 414	182 .	23.1	96-100	0 315	040	0 488	0.51	0 374	0 96			
	215	220	92 - 96			0 414	020			0 590	0	
	22: -	22 5	89-90							0 538	- 0	
	233 -	242	92-99							0 477	0	
0.532	189 -	191	89-96							0 618	٥	
	203 -	21 4	95-96			0 532	0 32	0.414	0 50			
	218		97-98							0 534	0	
	198 -	210	96-98			0 396	0.50					
1 THE W	-				L		0 60	0 185	100	L		
DAGRAM	DVE WERE	DERIVE	D FROM A	BEST FIT	TANCENT T	O THE MO	HR'S CIRCLE	S FOR EA	CH SAMPLE	TESTED.		

OVE WERE DERIVED FROM A BEST FIT TANCENT TO THE MOHR'S CIRCLES FOR EACH SAMPLE TESTED. S DESIGNATED BY THE CORRESPONDING MOHR'S DIAGRAM.

Revisions
Descriptions
Date Approved Symbol U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS KANSAS CITY MISSOURI LITTLE BLUE RIVER MISSOUAL
LONCVEW LAKE
US MAY COPS
TEST COMPARED
LICENSE EMBANKMENT CRITERIA AND
PERFORMANCE REPORT
TEST DATA SUAMARRES
LICHNO LIMIT-55 IMPERVIOUS ZONE
STAGE I A Sraid AS SHOWN Sheet RDS / WBE Submitted by Dwg No # D G 1 of 1 60 KBL-3-1452 1


1

D

В

2

PLATE NO 52

- 55 ZONE

(FT 22 37

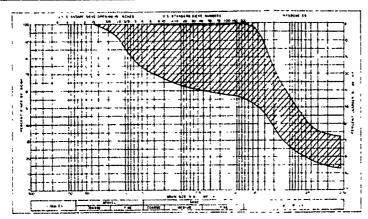
HEAD . 3 PSI

MATEPIAL

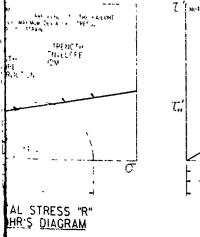
HDE BORSUM EY BORROW DATION OVER

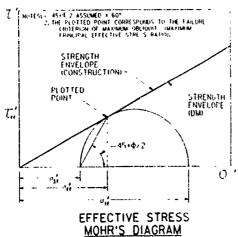
E - PEA E - RESIDI A

11!


GRADATE N

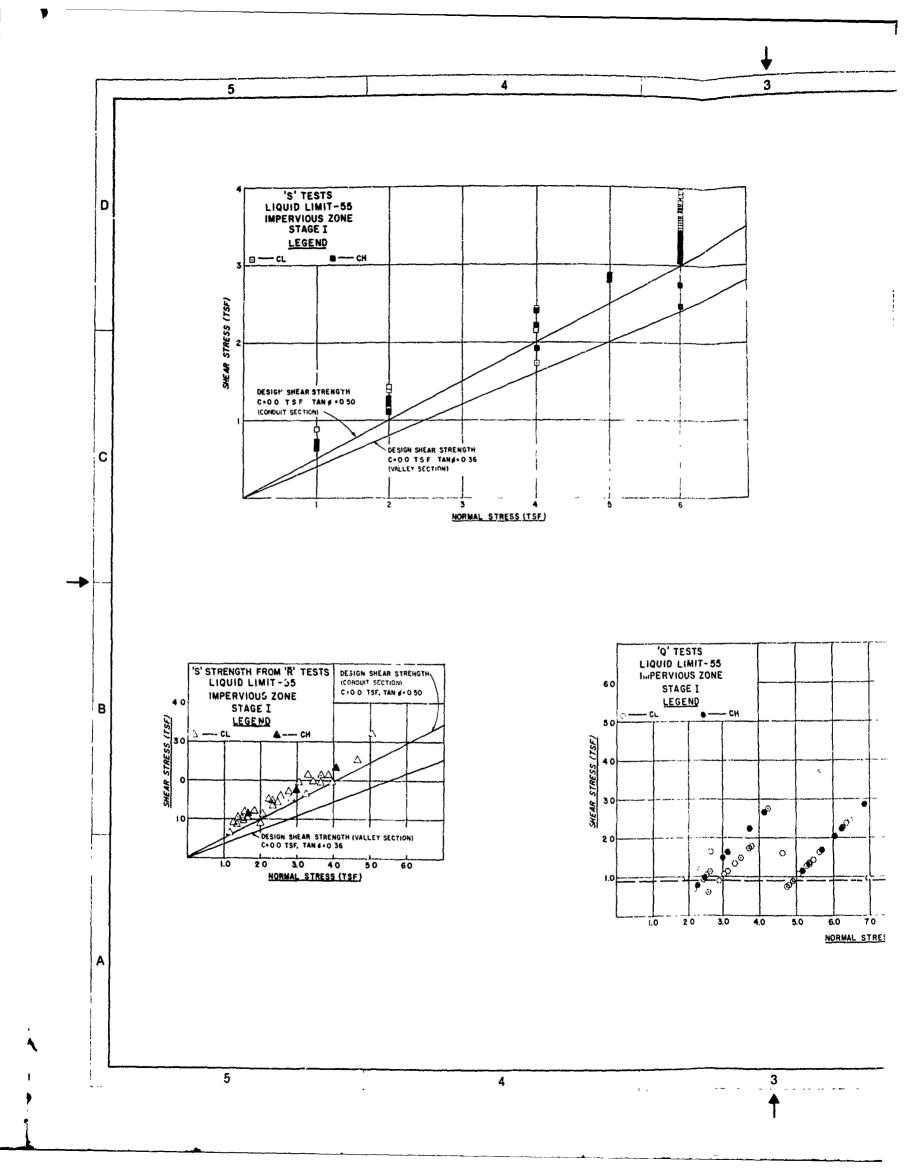
CONSTANT HEAD PERMEABILITY TEST SUMMARY

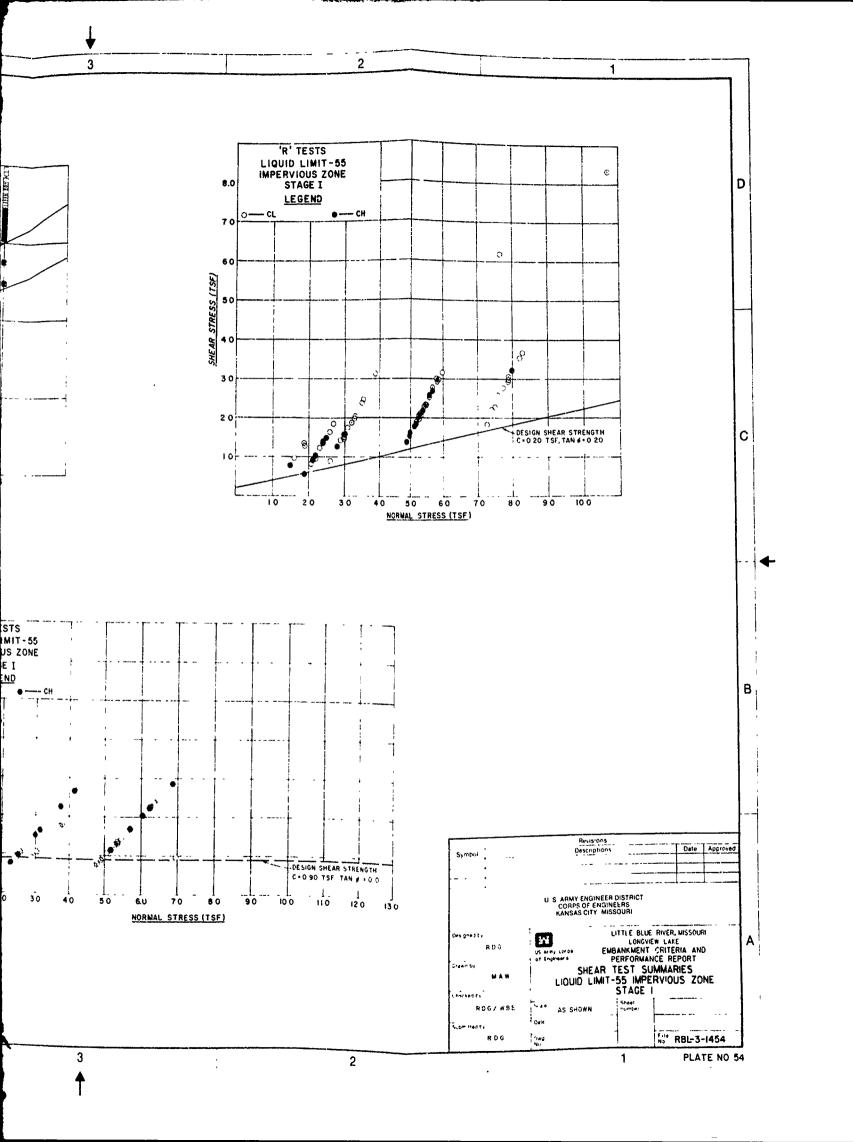

LIQUID LIMIT-5 IMPERVIOUS ZI STAGE I		····	·			INITIAL SPECIMEN CONDITIONS				FINAL SPECIMEN CONDITIONS			
SAMPLE	CEPTH (FT)	u	PL	PI	SPECIFIC GRAVITY	WATER CONTENT (%)	VOID RATIO	SAT (%)	DRY DENSITY (LBS/sT ³)	WATER CONTENT (%)	VOID RATIO	DRY DENSITY (LBS/FT ³)	AVERAGE PERMEABILITY CM/S
OH-2	22.0	41	14	27	2 64	20 6	0.58	94	104 2	21.4	0.49	1105	19 x 10-7
	37.5	28	19	,	2.62	16.2	0 42	100	115.1	16.0	0 40	417.0	2 2 x 10 ⁻⁸
	37 5	28	19	9	2 62	150	0 49	100	1099	178	0.42	115.5	26 x 10-8


DIFFERENTIAL HEAD . 3 PSI HORIZONTAL SPECIMEN ALIGNMENT

		PHY	SICAL	SOIL	CONS	TANTS	5				
	UNIT	WEIGHT	1		DES	SIGN SHE	AR S	TRENGT	HS		
MATERIAL	P.C.F.		Q			, R			, s		
	SAT.	MOIST	C(T.S.F)		TAN Ø	CIT.S.FJ	0	TAN 6	C(T.S.F)	0	TAN 6
BERM	N5	, NO	0.45	0.00	0.00	0.10	#.3	0.20	0.00	16.7	0.30
HILLSIDE BORROW	125	* #5	0.90	0.00	0.00	0.20	11.3	0.20	0.00	19.8	0.36
VALLET BORROW	125	† RS	0.90	0.00	0.00	0.20	11.3	0.20	0.00	26.6	0.50
FOUNDATION OVERSURDEN	115	1 110	0.60	0.00	0.00	0.20	11.3	. 0.20	0.00	26.6	0.50
SHALE - PEAK	140	140	' - '	-		- 1	•	-	0.00	31.0	0.60
SHALE - RESIDUAL	140	140	٠ - ١	•	٠.		•		0.00	16.7	0.30

LIQUID LIMIT - 55 IMPERVIOUS ZONE STAGE | GRADATION LIMITS FOR RECORD COMPREL SAMPLES TESTED.

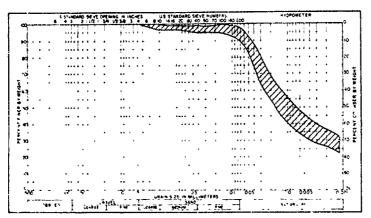

	Revis	ions		
Symbol	Descrip	otions	Date	Approved
			· 	
	U S ARMY ENGI CORPS OF E	NEER DISTRICT		
	KANSAS CITY	MISSOURI		
Designed by		LITTLE BLUE	RIVER, MISSOUR	
WBE	9~£	LONG\	MEW LAKE	
****	US Army Corps	EMBANKMEN'	CRITERIA AN	D
Drewn by	of Engineers	PERFORMA T DATA SI	NCE REPORT	
EDP	110110 11	MATER MAD	ERVIOUS ZO	NE
	בוטטוט בו	STAGE	1	
Checked by				
W.BE/RGD	Scale AS SHOWN	Sheet	}	
Submilled by	Defe	1		
FCW				
F W. W	Dwg No		RBL-3	-1403
		1	PLATE N	10. 53
		•		


2

D

C

В

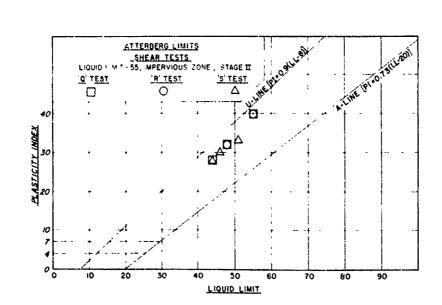


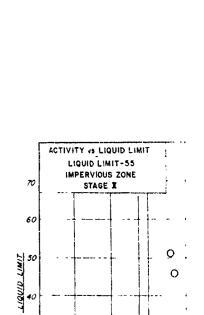
5 4 3

DATA ON RECORD CONTROL SAMPLES

							STAGE IL	LIQUID	LIMIT -33 IMPE	WIOUS Z	ONE			
HOLE	SAMPLE	CLASSIFICATION			D	DRY DENSITY		WATER CONTENT	"Q" TEST		"R" TEST			
NO.	DEPTH	SYM	L.L.	P.L.	P.I.	MAX.	INITIAL RANGE	OPT.	INITIAL RANGE	PERCENT	TAN	C TS.F.	TAN Ø	C TSF
RC-530-19		CL	48	16	32	100 6	103.0 - 104 8	20 6	20.7 - 21.9	94-96	0,087	1.05	0.532	0,19
RC-591-20		CH	55	15	40	98 3	102.5-103.8	22 1	22 6 - 230	100	0.018	0.85	0.404	021
RC-661-23		CL	46	16	30	98		22.7		ļ			i	
RC-682-26		CL	44	16	28	100.5	1011-1064	198	18 G - 19,0	77-87	0 298	1.15		<u> </u>
RC-701-27		CH	51	18	33	98 3		22.5					<u> </u>	<u> </u>

NOTE: EXCEPT FOR THE THE TEST, ALL SHEAR STRENGTH PARAMETERS PROVIDED ON THE SUMMARY TABLE ABOVE WERE DERIVED FROM A BEST FIT TANGENT TO THE MOHR'S CIRCLES THE TR-TEST-EFFECTIVE STRESS STRENGTH PARAMETERS WERE DERIVED FROM THE POINTS PLOTTED AS DESIGNATED BY THE CORRESPONDING MOHR'S DIACRAM.


CHOUR LIMIT - 55 IMPERVIOUS ZONE STAGE IT GRADAT ON LIMITS FOR RECORD CONTPOL SAMPLES TESTED.


D

C

В

Α

INACTIVE

06

04

20

PHYSICAL SOIL

0.45

0.90

0.90

9.60

0

0.00

0.00

0.00

HORMAL

ACTIVITY:

10

UNIT WEIGHT

Ρ£

1.5

125 115

HS HO

140 140

SAT. MOIST CIT.S.F)

NO

95

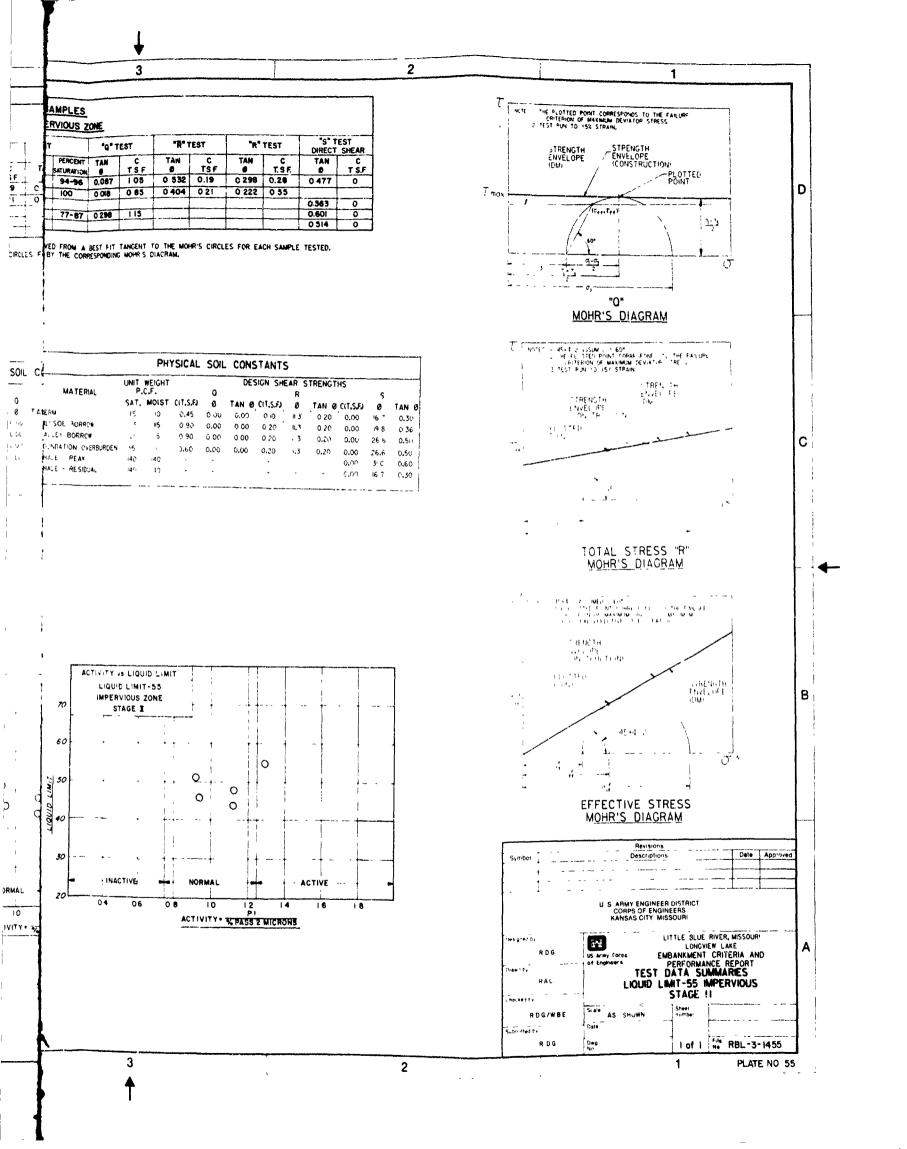
140 140

MATERIAL

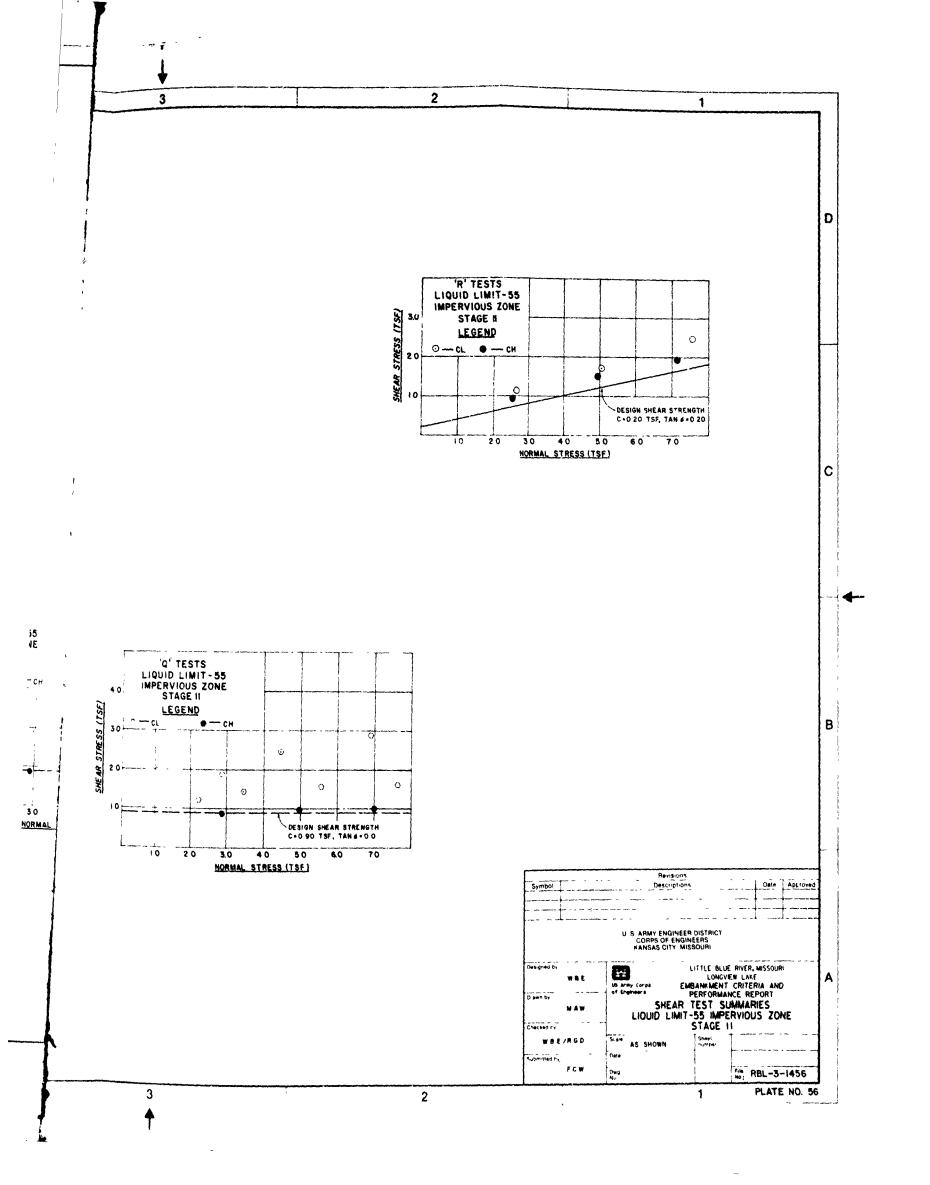
FOUNDATION EVERBURDEN,

HILLSIDE BORPON

VALLEY BORROW


SHALE PEAR

SHALE - RESIDUAL


BERN

5

4

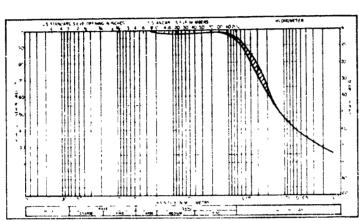
5 'S' TESTS D LIQUID LIMIT-55 IMPERVIOUS ZONE STAGE II LEGEND 0 --- CL SHEAR STRESS (TSF) DESIGN SHEAR STRENGTH C+GU TSF, TAM#+0 50 (CONDUIT SECTION) C DESIGN SHEAR STRENGTH C=0 0 TSF, TAN#=036 (VALLEY SECTION) NORMAL STRESS (TSF) 'Q' TESTS LIQUID LIMIT-55 IMPERVIOUS ZONE STAGE II 'S' STRENGTH FROM 'R' TESTS LIQUID LIMIT-55 IMPERVIOUS ZONE STAGE II SHEAR STRESS (TSF) LEGEND LEGEND SHEAR STRESS (TSF) В ∆ --- CL DESIGN SHEAR STRENGTH-(CONDUIT SECTION) C+OO TSF TAN d+O 50 Δ 10 -DESIGN SHEAR STRENGTH (VALLEY SECTION) C=0.0 TSF TAN 4=0.36 30 10 20 NORMA 50 10 20 30 40 NORMAL STRESS (TSF) Α 3

DATA ON RECORD CONTROL SAMPLES STAGE I LIQUID LIMIT - 60 RANDOM ZONE HOLE SAMPLE CLASSIFICATION WATER CONTENT DRY DENSITY PER CENT INITIAL RANGE ΡĮ DEPTH SYM P.L. L.L. MAX NO INITIAL RANGE OPT 00 22.3 - 246 98 15 36 RC-8 CH 51 100 8 998-1037 204

NOTE: ALL "O" AND "R" SHEAR STRENGTH PARAMETERS PROVIDED ON THE SUMMARY TABLE ABOVE WERE DERIVED FROM A BEST FIT LINE TANGENT TO THE MORR'S CIRCLES FOR EACH SAMPLE.

MATERIAL

FOUNDATION OVERBURDEN 115


HILLSIDE BORROW

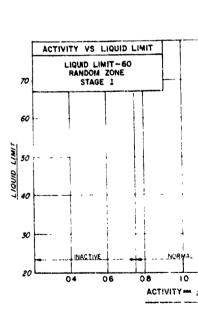
VALLEY BURROW

SHALE - PEAK SHALE RESIDUAL

BERM

3

LIQUID LIMIT - 60 RANDOM ZONE STAGE ! GRADATION LIMITS FOR RECORD CONTROL SAMPLES TESTED.


5

D

C

В

60-	LIQUI	SHE C LIMIT 60	RBERG LIF AR TEST RANDOM Z R'TEST		<u> </u>	21. 3 aut. 1832		roto 131	201
40					3 544]	1		
30							•		
20	-		-//			+			
10									
0	10	50	30	40	50 ILLIMIT	BO 7	0 8	C a	0

PHYSICAL SOIL C

0.45

0.90

0.90

. 0.60

ø 0.00

..00

0.00

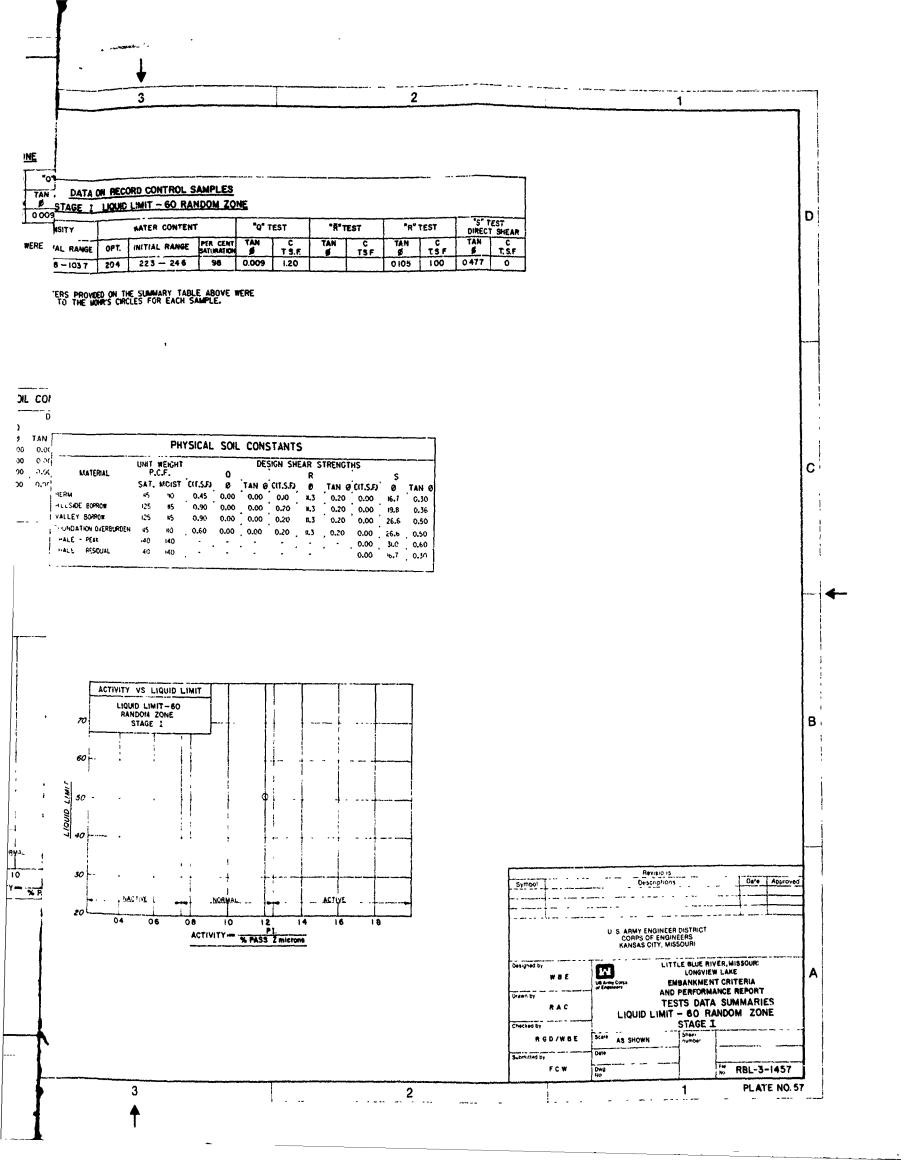
0.00

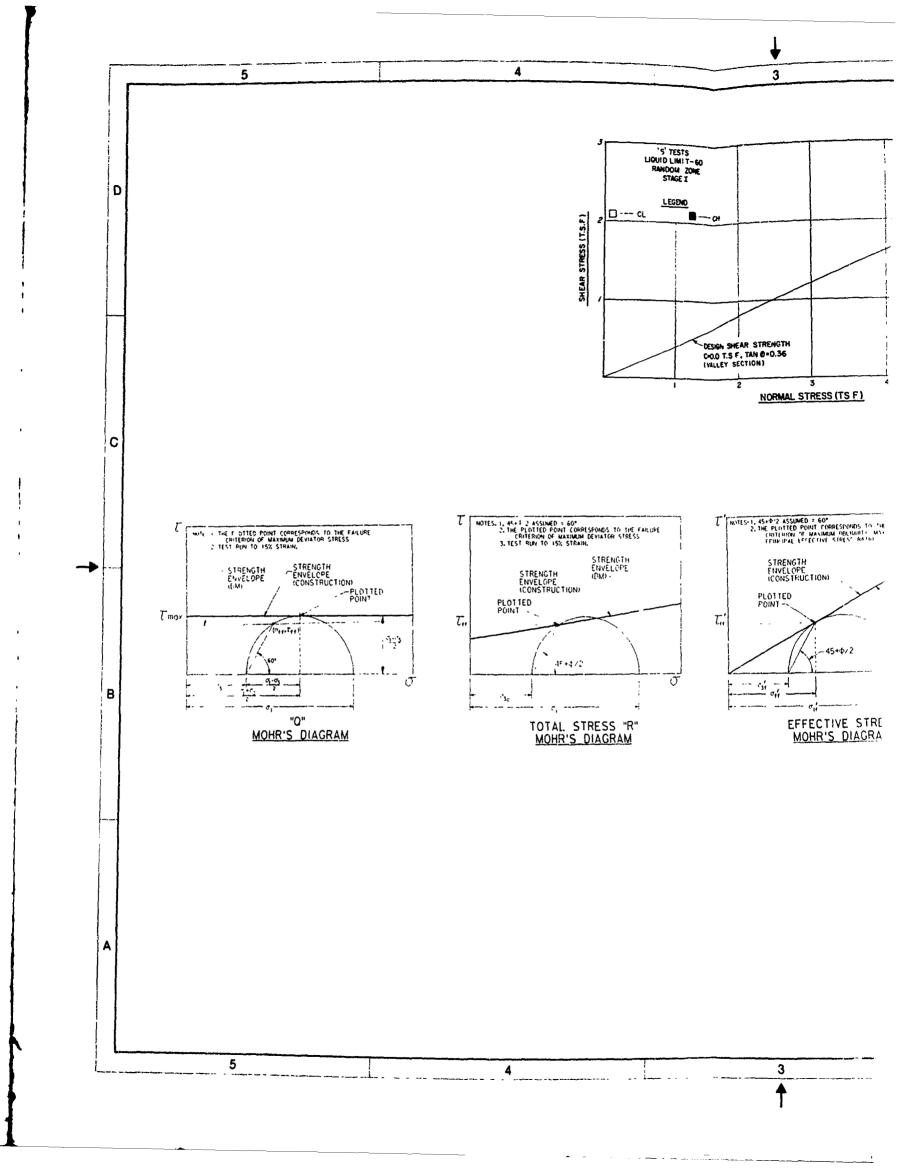
UNIT WEIGHT

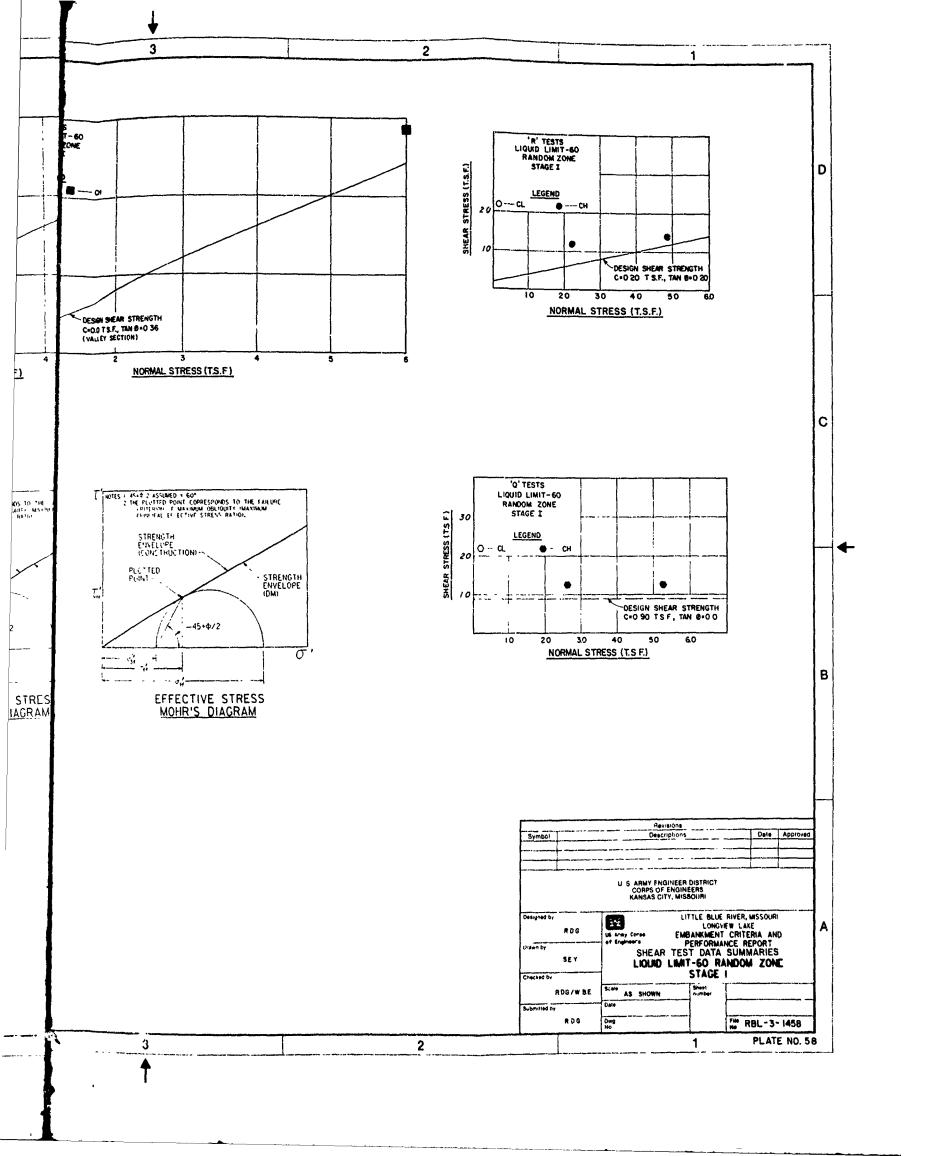
H5 125 115

125

140 140

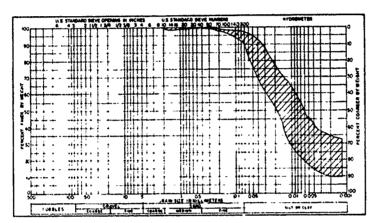

140 140


SAT. MOIST CIT.S.F.


Ю

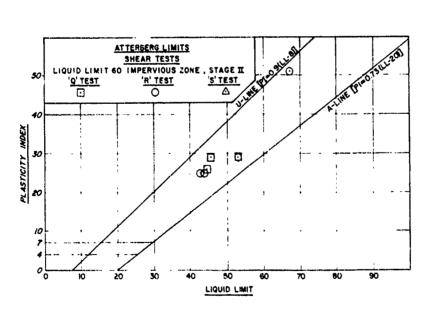
115

НO

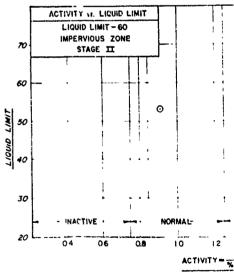


							DATA C	N RECO	RD CONTROL S	amples Rvious Z	ONE
HOLE	SAMPLE		CLASSIF	ICATION		0	RY DENSITY		WATER CONTEN	7	
NO.	DEPTH	SYN.	L.L.	P.L.	e. I.	MAX.	INITIAL RANGE	OPT.	INITIAL RANGE	PER CENT BATURATION	_
RC-003 29		CH	53	24	29	980	101.3 — 103 6	23 2	229 - 24.4	100	
U-748	70.6-71.i 72.3-72.8	CL CL	43 45	18	25 25		105.5 - 106.3		20.8 - 21.4 23.2 - 23.5	97-96 97	1
U~747	34-39	CH	67	16	51	 	103 5 105.2		21.3 - 22.3	93-95	O

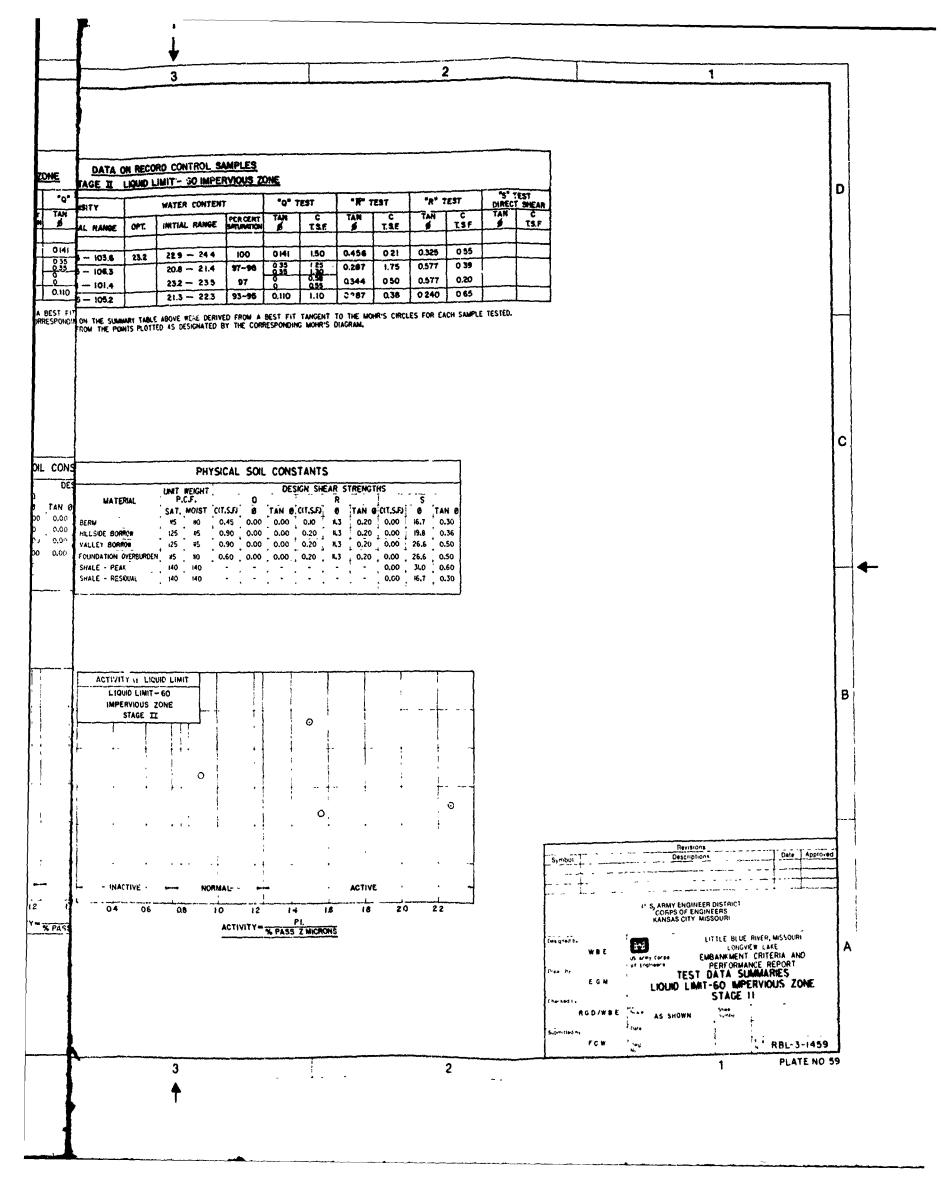
NOTE: EXCEPT FOR THE TOTEST, ALL SHEAR STRENGTH PARAMETERS PROVIDED ON THE SUMMARY TABLE ABOVE WERE DERIVED FROM A BEST THE TREST-EFFECTIVE STRESS STRENGTH PARAMETERS WERE DERIVED FROM THE POINTS PLOTTED AS DEFICHATED BY THE CORREST

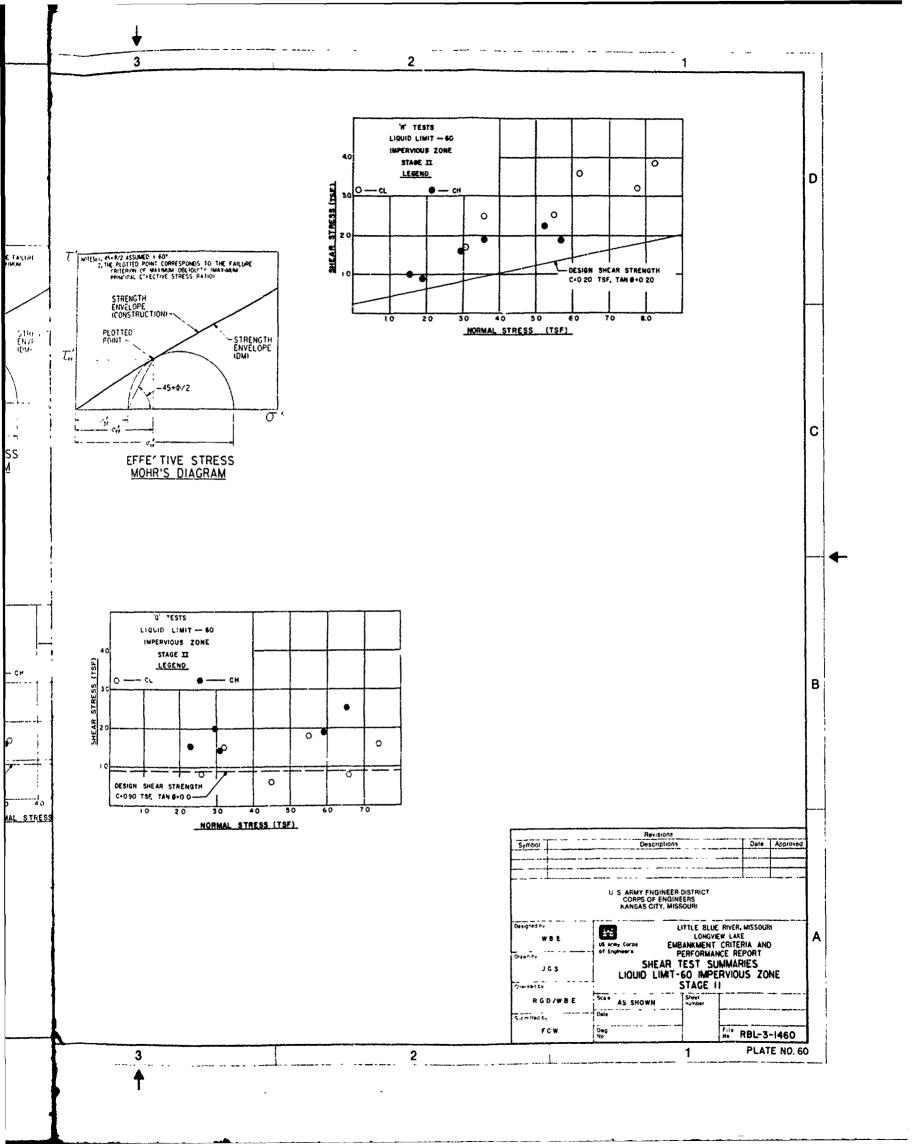

LIQUID LIMIT - 60	IMPERVIOUS ZONE STAGE II	
GRADATION LIMITS	FOR RECORD CONTROL SAMPLES	TESTED.

D


C

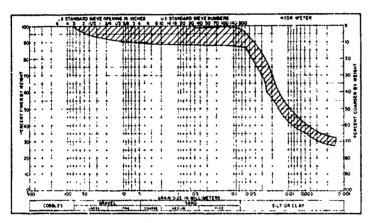
В


i A


P.1		-	0	
SAT.	MOIST	CIT.S.FJ	0	Ţ.
115	110	0.45	0 00	٠,
125	i 115	0.90	0.0	. 1
125	n5	0.90	00)	•
R5	1 110	0.60	0 00	,
140	140	·	-	
140	140	•	•	
	P.1 SAT. 115 125 125 125 140	P.C.F. SAT. MOIST US 100 125 115 125 115 125 115 140 140	P.C.F. C(17.S.F.) 185 180 0.45 125 185 0.90 125 185 0.90 185 180 0.60 140 140	P.C.F. 0 SAT. MOIST CIT.S.F) 0 10 0.45 0.00 125 115 0.90 0.0 125 115 0.90 0.0 140 140

5

3 5 D NOTES: 1, 45+0/2 ASSUMED = 60°
2. THE PLOTTED POINT (GRRESPONDS TO THE FARURE CRITERION OF MANNAUM DEVIATOR STRESS, 3, TEST RUN TO 15% STRAIN. WOTES: 45-9/2 ASSIMED = 60°
THE PLOTTED POINT CORRESPONDS TO THE FAUL CRITERION OF MAXIMAM OBLIGHTY MAXIMAM PRINCIPAL EFFECTIVE STRESS RATIO). NOTE 1 THE PLOTTED POINT CORRESPONDS TO THE FAILURE CPITERION OF MAXMAN DEVIATOR STRESS.
7 TEST RUN TO 15% STREPL STRE-IGTH
-ENVELOPE
(CONSTRUCTION)
-PLOTTED
-POINT STRENGTH ENVELOPE (DM) -STRENGTH ENVELOPE (CONSTRUCTION)-STRENGTH ENVELOPE (DM) STRENGTH ENVELOPE (CONSTRUCTION) -PLOTTED POINT -PLOTTED POINT-Tmax τ., 3-5 45+4/2 45+4/2 σ *~*;; -; -∤ C "Q" TOTAL STRESS "R"
MOHR'S DIAGRAM EFFECTIVE STRESS MOHR'S DIAGRAM MOHR'S DIAGRAM 'Q' TESTS LIQUID LIMIT - 60 IMPERVIOUS ZONE S' STRENGTHS FROM 'A' TESTS DESIGN SHEAR STRENGTH STAGE II LIQUID LIMIT - 60 (CONDUIT SECTION) SHEAR STRESS (TSF) LEGENO IMPERVIOUS ZONE C+0 0 TSF, TAN Ø +0 50 - CL В SHEAR STRESS (TSF) STAGE II LEGEND Δ Δ Δ Δ o DESIGN SHEAR STRENGTH C+090 TSF, TAN 9-00--DESIGN SHEAR STRENGTH IVALLEY SECTION NORMAL S C-0 0 195 TANG+0 36 30 NORMAL STRESS (TSF) 5__ 3

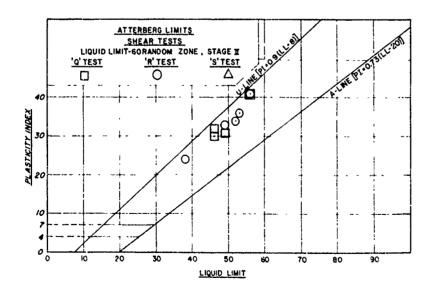


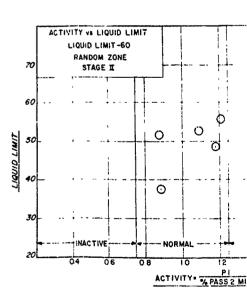
DATA ON RECORD CONTROL SAMPLES

STAGE IL LIQUID LIMIT - 60 RANDOM ZONE

İ							STAGE I	LIQUID	LIMIT - 60 RA	NDOM ZO	NE.
HOLE	SAMPLE		CLASSIFI	ICATION		[·	DRY DENSITY	r !	WATER CONTEN	т	*9
NO.	DEPTH	SYM.	LL.	P.L.	P.I.	MAX	INITIAL RANGE	OPT	INITIAL RANGE	PERCENT	TAN
RC-479-17		СН	52	18	34	978	103 4-104 5	227	22 2 - 22.8	100	0.05
RC-674-24		СН	52	:5	41	98.0	984-997	228	246-25.1	96-97	003
PPE-94-1		CH CL CL	53 49 38	17 16 14	36 33 24		99 6 - 102 4 1065 - 108 0 1076 - 110 6		22 9 - 24 6 20.4 - 21.3 19.4 - 20 8	96 100 96-100	0.024 0.009 0.044

NOTE: EXCEPT FOR THE TR' TEST, ALL SHEAR STRENGTH PARAMETERS PROVIDED ON THE SUMMARY TABLE ABOVE WERE DERIVED FROM A BEST FINE TR' TEST-EFFECTIVE STRESS STRENGTH PARAMETERS WERE DERIVED FROM THE POWTS PLOTTED AS DESIGNATED BY THE CORRESPOND


	RANDOM ZONE STAGE	
GRADATION LIMITS	FOR RECORD CONTROL	. SAMPLES TESTED.


5

D

В

		PHY	SICAL	SOIL	CONS	TAN
MATERIAL		WEIGHT	0	DESIGN		
	SAT.	MOIST	CIT.S.F3	Ø	TAN Ø	C(T,S
BERM	H 5	RO.	0.45	0.00	0.00	0.4
HILLSIDE BORROW	125	N2	0.90	0.00	0.00	0.2
VALLEY BORROW	125	#5	· 0.90 ·	0.00	0.00	٥
FOUNDATION OVERBURDEN	115	80	0.60	0.00	0.00	0
SHALF PEAK	140	140	•			
SHALE - RESIDUAL	140	140	- '			

DATA UN RECORD CONTROL SAMPLES

3

TAGE I LIQUID LIMIT - 60 RANDOM ZONE

•

SITY	WATER CONTENT		T			"S" 1	SHEAR				
L RANGE	OPT	INITIAL RANGE	PERCENT SATURATION	TAN Ø	C TSF	TAN	C	TAN	C TSF	TAN	C T.S.F
1045	227	22 2-22 8	100	0052	100	0 456	0.20	0222	0 50		
99 7	228	246-251	96-97	0035	105	0 456	007	0240	0.20		
102 4		229-246	96 100	0 026 0 009	105	0.414	020	0096	1 25		
1106		194-208	98-100	0.009	078	0.577	0 28	0259	0 73		

NI THE SUMMARY TARE ABOVE WERE DERIVED FROM A BEST FIT TANCENT TO THE MONEY'S CIRCLES FOR EACH SAMPLE TESTED. ON THE POINT'S PLOTTED AS DESIGNATED BY THE CORRESPONDING MONEY'S DIAGRAM,

		PH	YSICAL	SOIL	CON	STANTS	5				
IA TERIAL		WEIGHT			DE	SIGN SHE	AR S	TRENGT	'H\$		
W . CHIAC	г.	C.F.		0			R			S	
	SAT.	MOIST	CET.S.EX	0	TAN Ø	CIT.S.FX	Ø	TAN 0	C(T.S.F)	0	TAN Ø
	15	9.	0,45	0.00	0.00	0,10	H. 3	0.20	0.00	16.7	0.30
SCRRO#	125	#5	0.90	0.00	0.00	0.20	11.3	0.20	0.00	19.8	0.36
F -FOW	25	15	1,70	0,00	ن.ان	0.20	0.3	0,20	0.00	26.6	0.50
ION OVERBURGEN	15	10	(1,6)	ULCO	1.00	0.20	ρ, 3	0.20	0.00	26.6	0.50
- > A×	40	4()					··.	0160	0.00		
h b DUA	٠,	4 1							0.00	31.0 16.7	0.60

ACTIVITY AS LIQUID LIMIT

LIQUID LIMIT -60

RANDOM ZONE

STAGE II

O

O

INACTIVITY

NORMAL

ACTIVE

ACTIVE

ACTIVITY

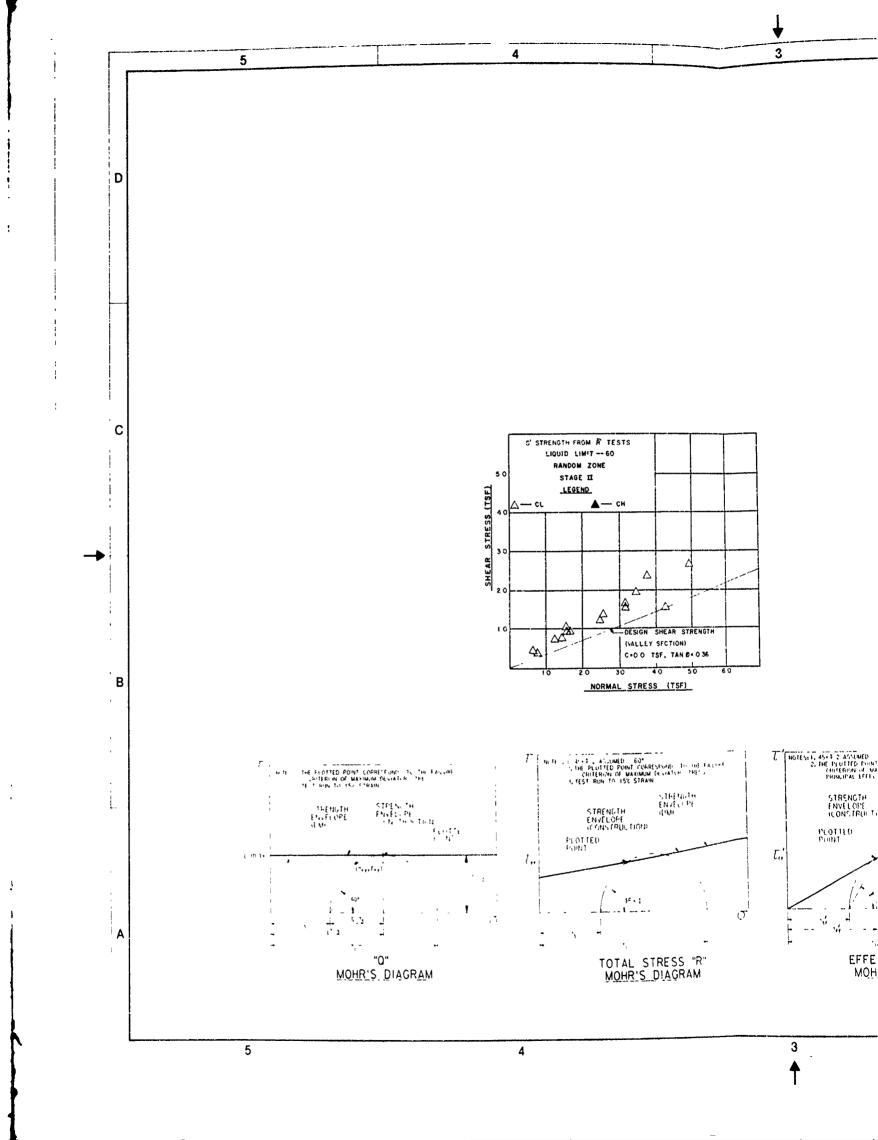
PASS 2 MICRONS

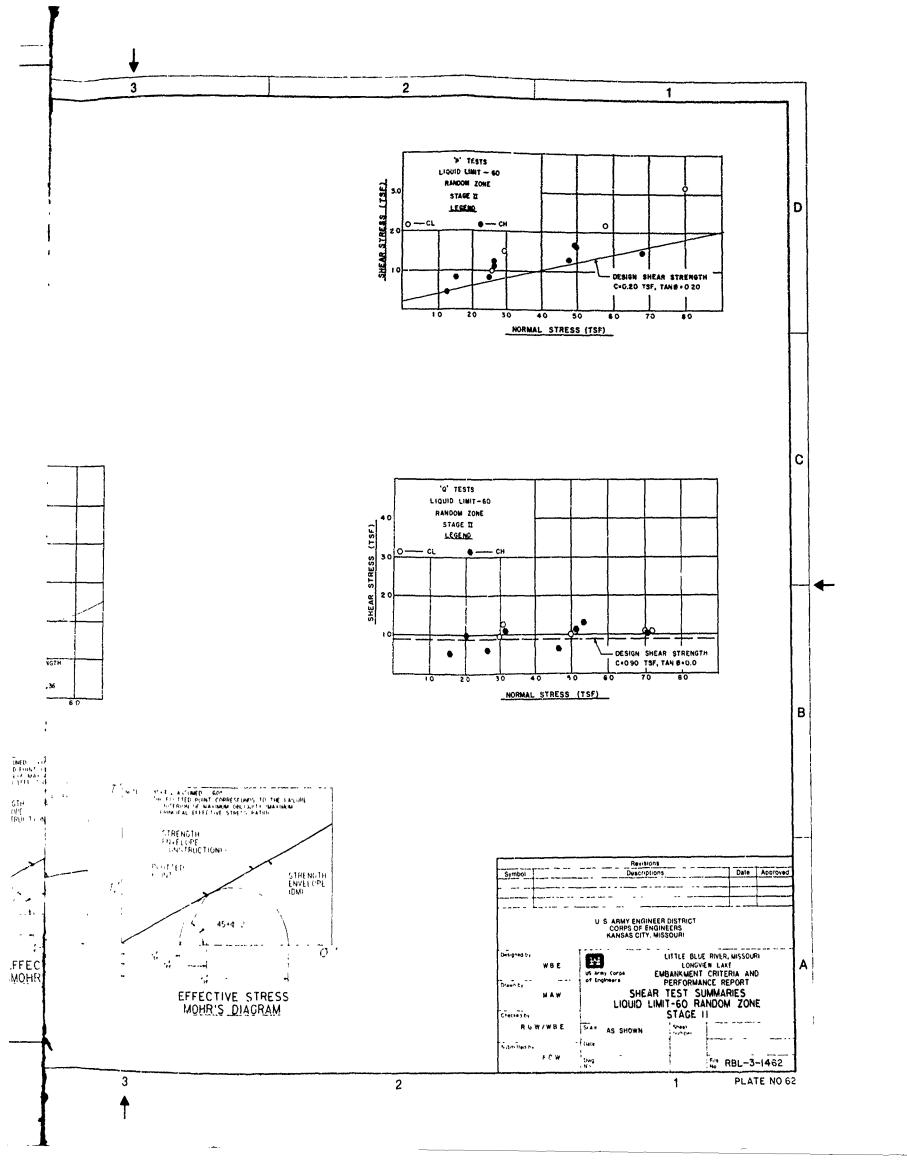
	Resis	i, hs			
Syn tur	(heach)	tions		Date	Approve
				I	
			_	4	
	LORPS OF E			_	
WBE	US AFMY COPPA	LITTLE BEUI LONG EMBANKMEN	VIEW L	AKE	
RAC		PERFORM T DATA SI LIMIT-60 R STAGE	UMMA ANDO	RIES	E
R G D / W B E	AS SHOWN	Sheet in 1st e			
Note to the only	ate:		Ī		
FCW	***	1	٠,	RBL-3	-1461

1

D

С


В

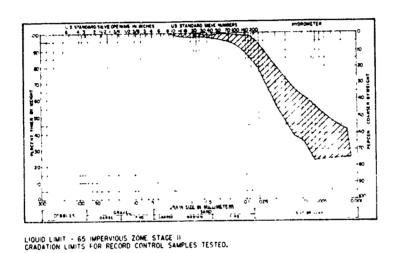

,

2

PLATE NO 61

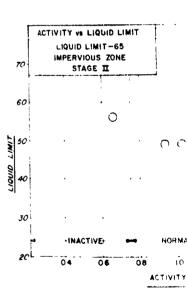
,

DATA ON RECORD CONTROL SAMPLES


STAGE II LIQUID LIMIT—65 IMPERVIOUS ZOI

OLE SAMPLE CLASSIFICATION DRY DENSITY WATER CONTENT

NO DEPTH SYN LL PL PI. MAX INITIAL RANGE OPT INITIAL RANGE EXTURATION

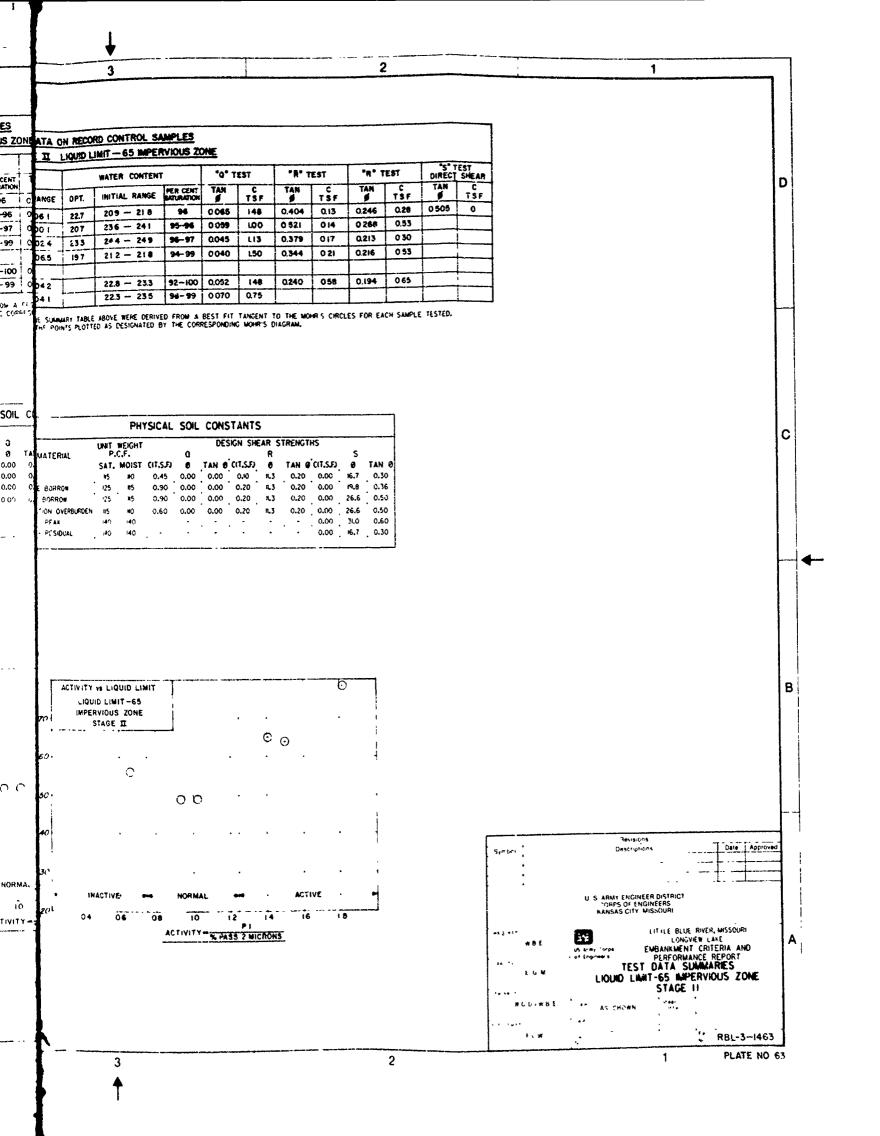

HOLE	SAMPLE		CLASSIF	CALION		1 "	WI DEMONIA	Ì	MAIL!! COTTE	- +
NO	DEPTH	SYN	LL	PL	PI.	MAX	INITIAL RANGE	OPT	INITIAL RANGE	PER CENT BATURATION
RC-44515		CL	41	18	23	992	1043 - 1061	22.7	20.9 - 21.8	96
RC-724-28		CH	55	17	38	977	96.8 100 1	207	236 - 241	95-96
RC-821-30		CH	56	25	31	973	101.2 102.4	233	24.4 - 24.9	96-97
RO-682-33		CL	49	16	33	102.4	1045 - 1055	197	212 - 218	94-99
U-745	64-69	СН	64	16	48	┿	994 - 1042		22.8 - 233	92-100
	16.4-16.9	CL	49	18	31	†	1021 - 1041	 	223 - 235	96-99

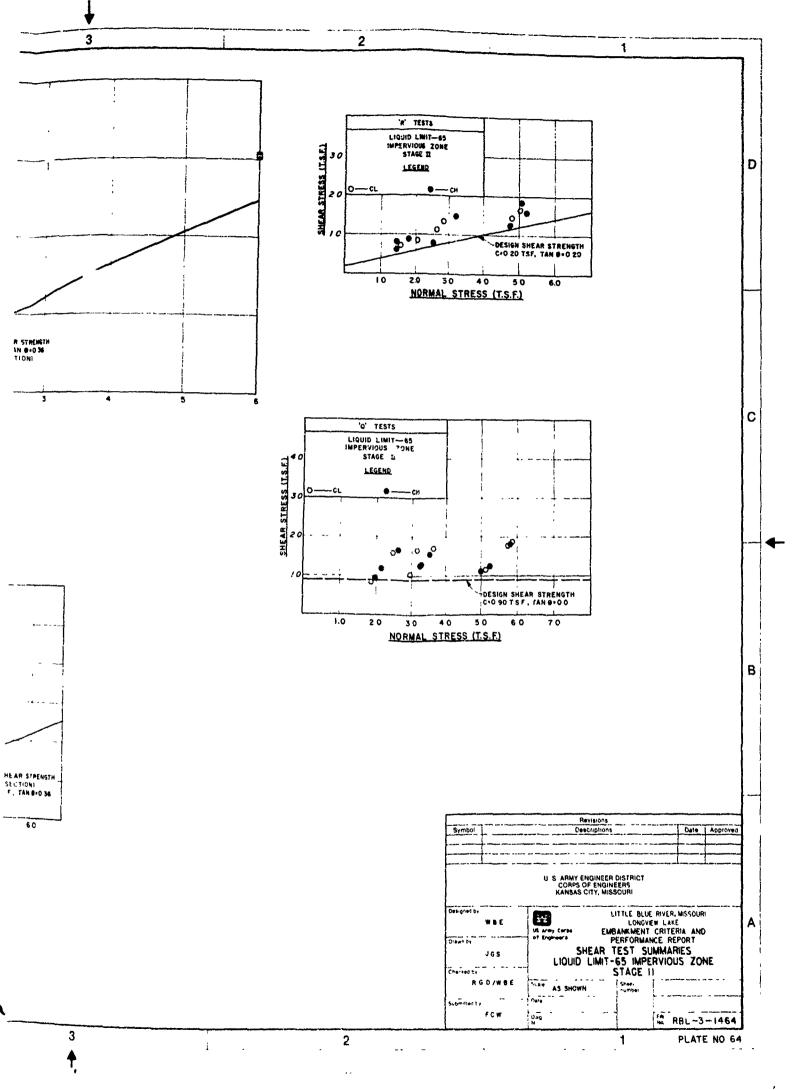
NOTE: EXCEPT FOR THE 'R' TEST, ALL SHEAR STRENGTH PARAMETERS PROVIDED ON THE SUMMARY TABLE ABOVE WERE DERIVED FROM A FINE THE TEST-EFFECTIVE STRESS STRENGTH PARAMETERS WERE DERIVED FROM THE POINTS PLOTTED AS DESIGNATED BY THE CORPOR

		PHY	SICAL	SOIL
MATERIAL	Ρ,	WEIGHT		0
	SAT.	MOIST	CIT.S.FJ	Ø
BERM	115	່ ສວ	0.45	0.00
HILLSIDE BORROW	125	N5	0.90	0.00
VALLE+ BORROW	125	#5	0.90	0.00
FOUNDATION OVERBURDEN	115	. HO	0.60	0.00
SHALE PEAK	140	140		
SHALE - PESIDUAL	140	140	•	

50	Liqui! 'Q' TEST	SHI LIMIT-6	RBERG LII EAR TEST 5 IMPERVIO 'R' TEST	IS DUS ZONE	, STAGE II S'TEST	E RI-09W		INE D	180 3 lil. 2	ดัง
40 äl	•	:	•	,) × C	2	• • • • • • • • • • • • • • • • • • • •	N. C.	•	1
TY INDEX				, 3/		<u>ק</u>	,			1
PLASTICITY 03					<i>/</i> .			: +	†	
10		/	1 4	/.		i *		†	*	
0	1	, 	,		1				-	
0	ю	50	30	40 <u>Li</u>	50 QUID LIM	60 <u>IT</u>	70	80	90	

3


5


5

C

В

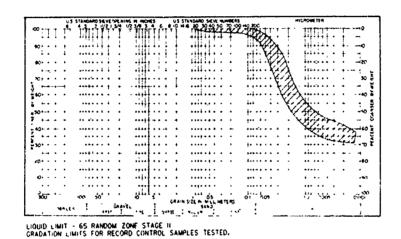
Α

•

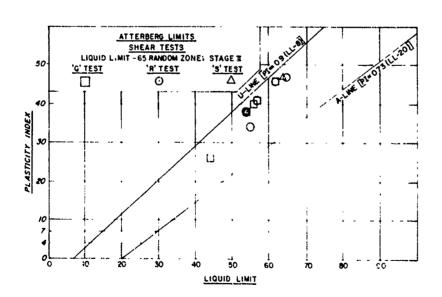
5

D

C


В

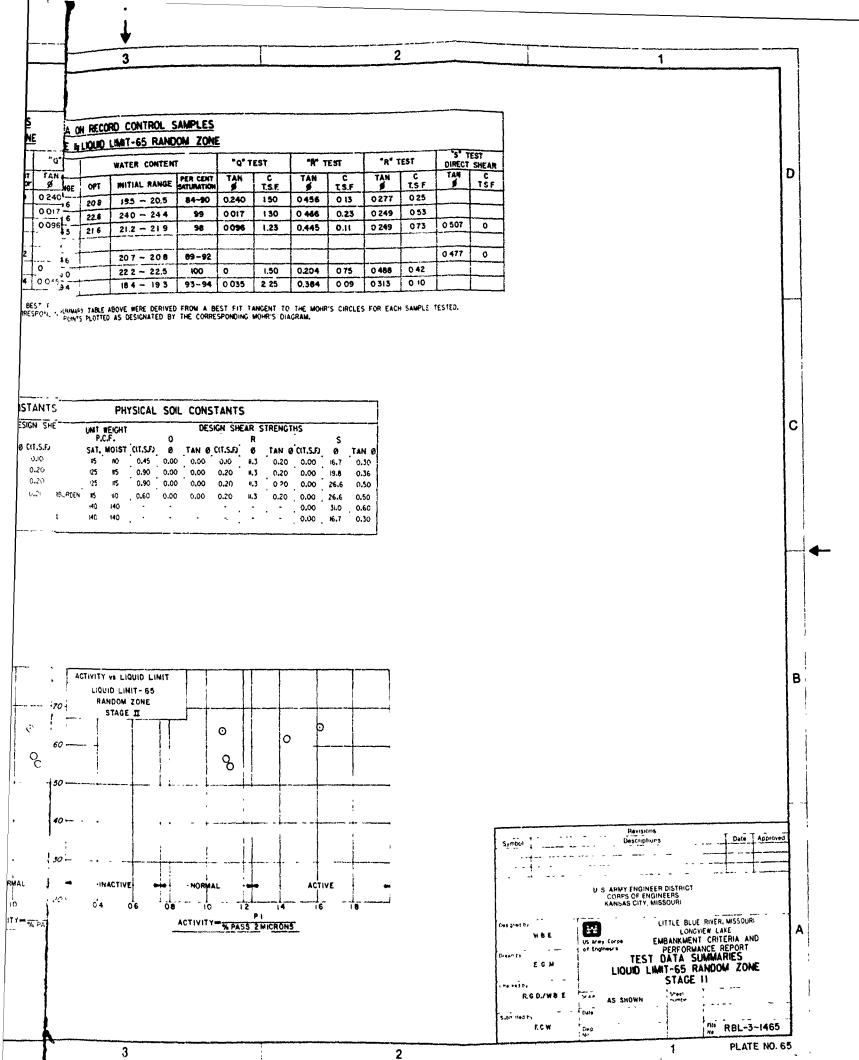
A

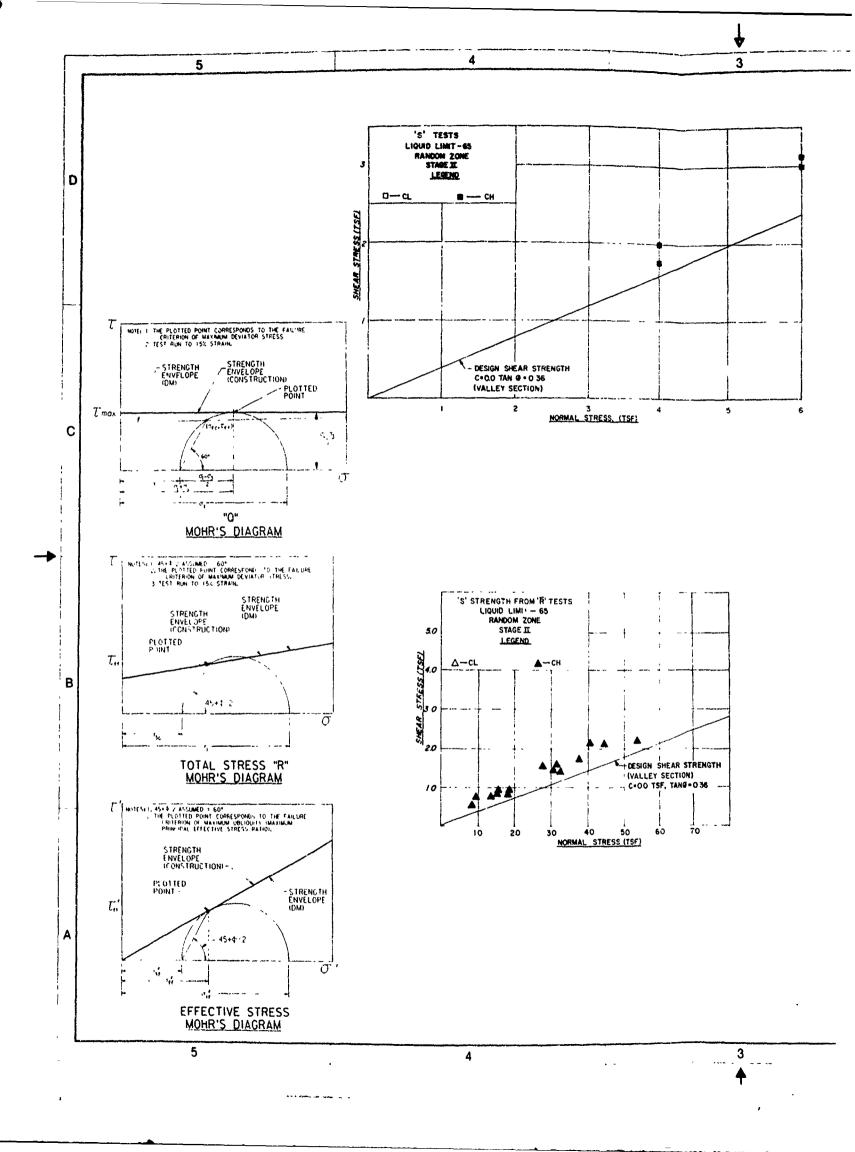

DATA ON RECORD CONTROL SAMPLES
STACE HANGED LIMIT-65 RANDOM ZONE

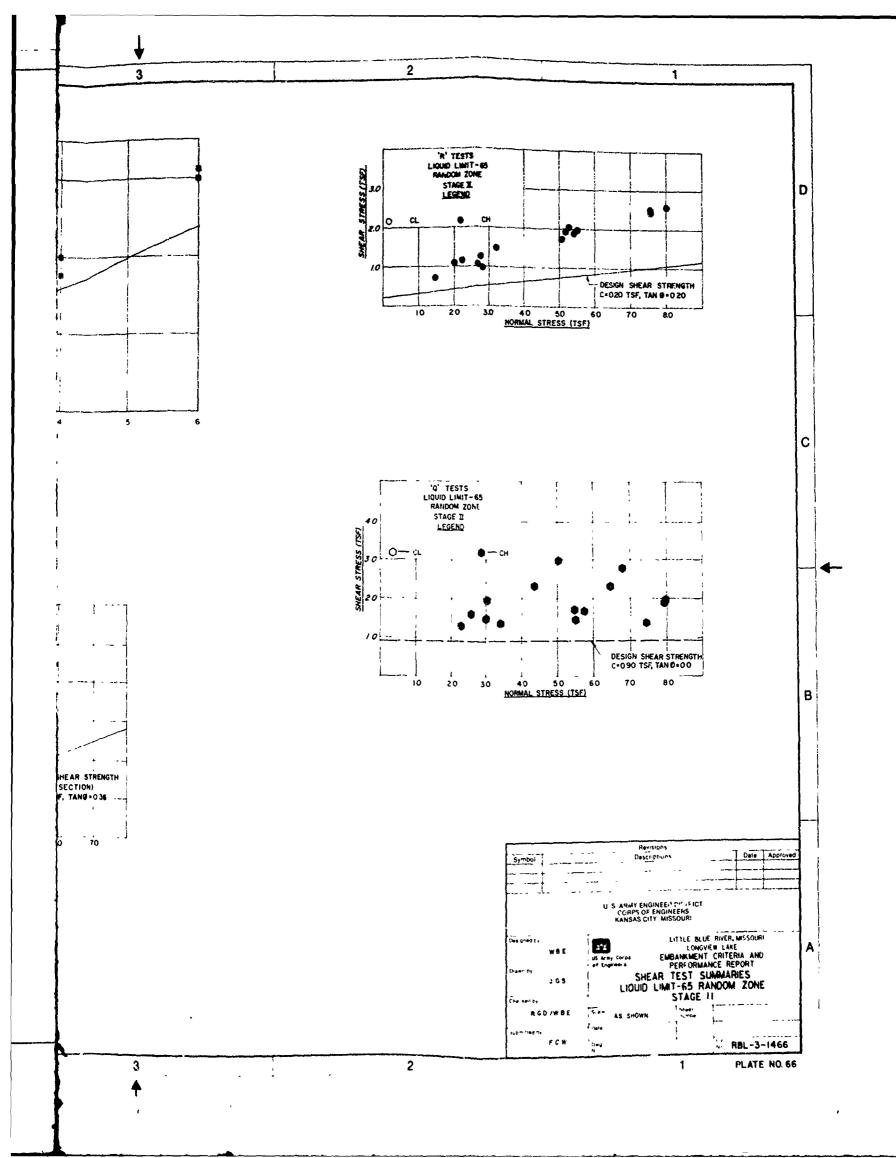
	,						STAUL M	LIVE	FINAL COLUMNY		- -:
HOLE	SAMPLE		CLASSIF	ICATION			RY DENSITY	WATER CONTENT			
NO.	DEPTH	SYN	L L.	PL	P.I.	MAX	INITIAL RANGE	OPT	INITIAL RANGE	PER CENT SATURATION	
RC-659-22		СН	57	16	41	99.7	1039 - 1056	208	19.5 20.5	84-90	0.5
RC-592-21		СН	62	16	46	975	1010-1016	22.6	240 - 244	99	0.0
RC-452-16		СН	54	16	38	100.2	1053 - 1065	216	212 - 219	98	00
1-26-يدزع	58 3							t			L
PPE-95-1	18.8-193	СН	78	20	58	<u> </u>	1032 - 1046		20.7 - 208	89-92	<u> </u>
	28.8-29.3	CH	65	18	47		1041 - 105.0	 	22.2 - 22.5	100	0
PPE-93-12	5.4-5.9	CH	55	21	34	-t	1075-1094	<u> </u>	184 - 193	93-94	Tod

NOTE: EXCEPT FOR THE "R" TEST, ALL SHEAR STRENGTH PARAMETERS PROVIDED ON THE SUMMARY TABLE ABOVE WERE DERIVED FROM A BEST OF THE "R" TEST-EFFECTIVE STRESS STRENGTH PARAMETERS WERE DERIVED FROM THE POINTS PLOTTED AS DESIGNATED BY THE CORRESPONDED.

		PHY	YSICAL	SOIL	CONS	TAN
MATERIAL	UNIT WEIGHT			0	DES	IGN S
	SAT.	MO!ST	'CIT.S.F)	0	TAN Ø	CIT.S.
BERM	85	. 100	0.45	0.00	0.00	0.10
HM LSIDE BORROW	125	#5	0.90	0.00	0.00	0.20
VALLEY BORROW	125	¥5	0.90	0.00	0.00	0.20
FOUNDATION OVERBURDEN	K5	HO	0.60	0.00	0.00	0.2
SHALE - PEAR	140	140	· - ·	-	-	
SHALE - RESIDUAL	140	140	•	-		

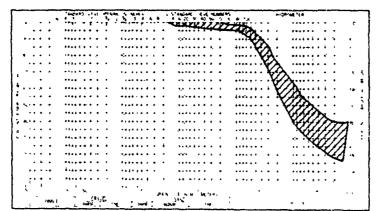





5

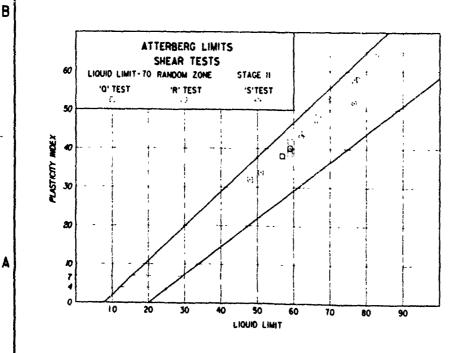
4

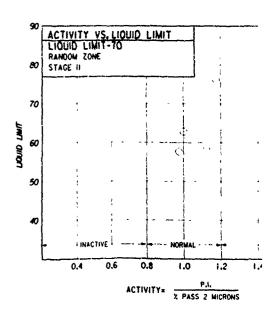
3

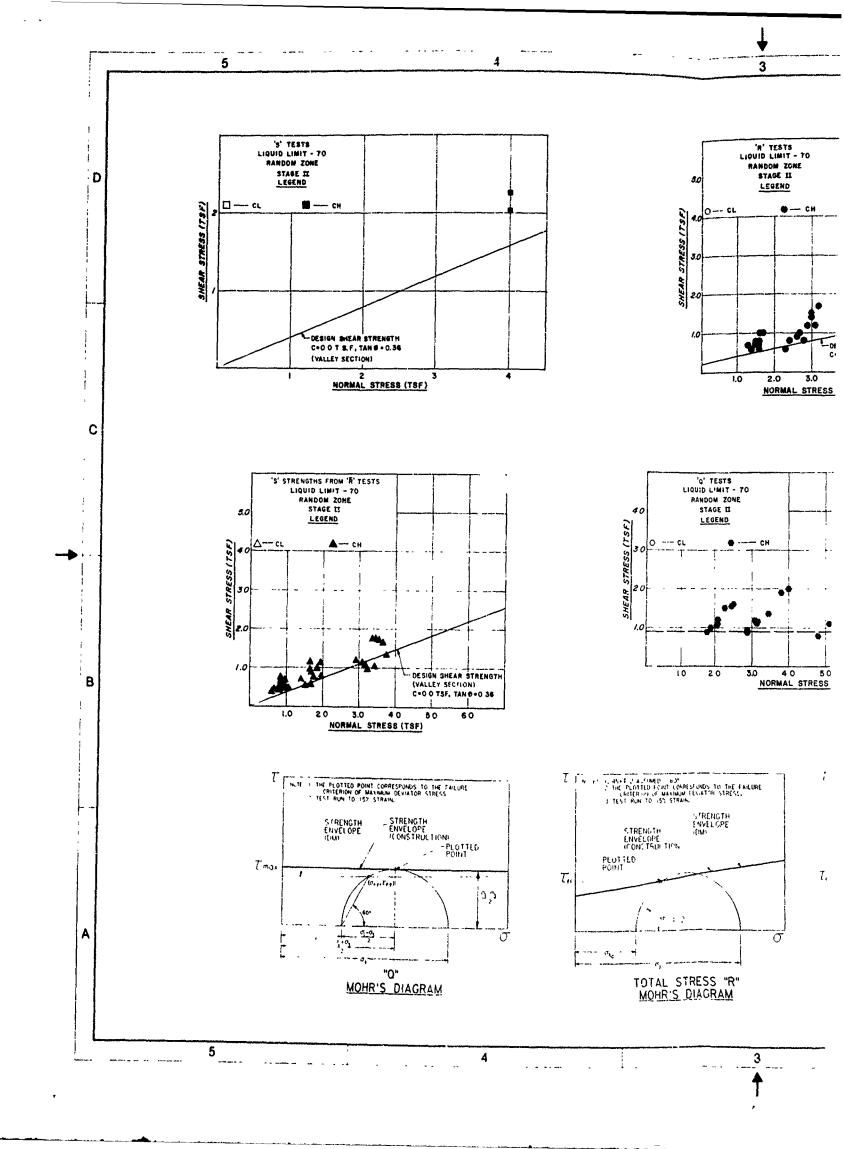


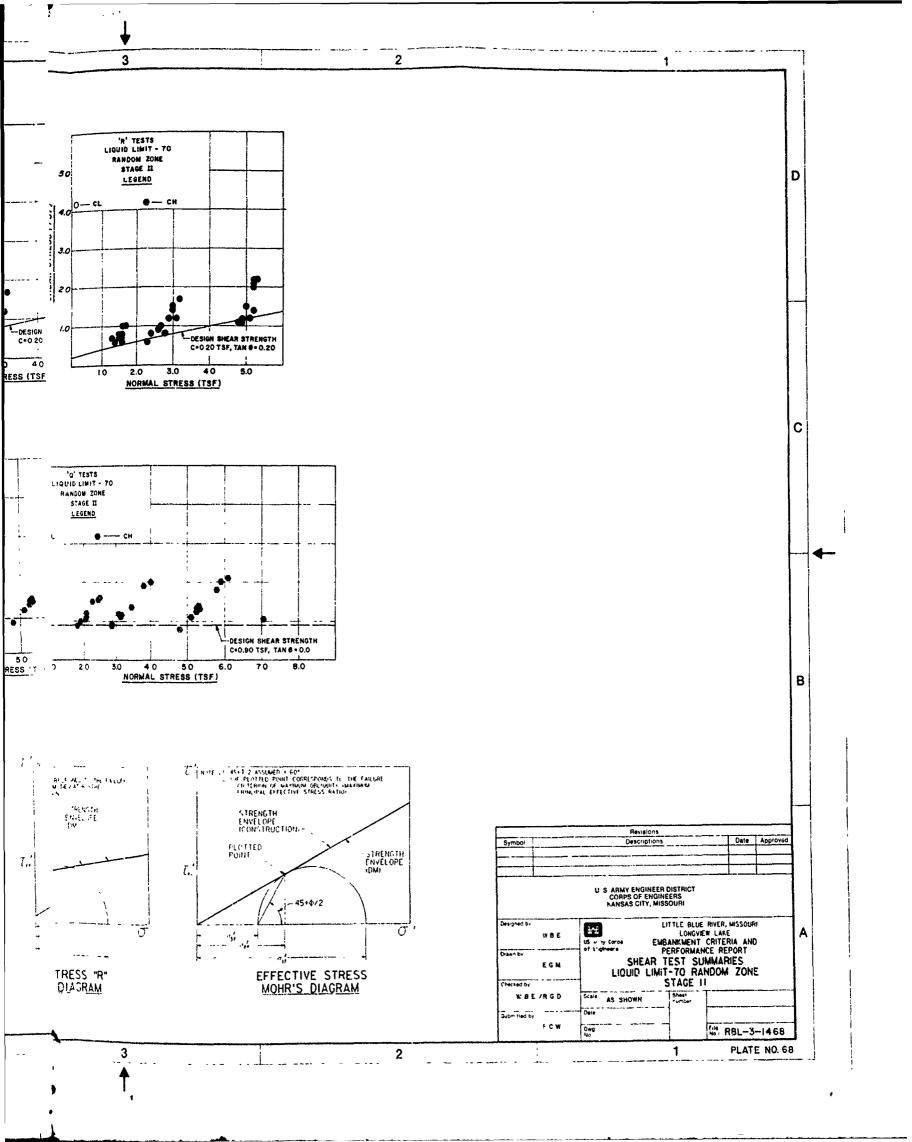
C

DATA ON RECORD CONTROL SAMPLES STAGE IN LIQUID LIMIT-70 RANDOM ZONE


]							4 1				•						
HOLE	SAMPLE	וא יייייייייייייייייייייייייייייייייייי	.	DR	Y DENSITY	, ,	WATER CONTEN	ıT .	101 1	EST	₩1	EST	RI	EST	٥		
MO.	DEPTH	SYM	LL	P.L.	PA	MAX.	MITIAL RANGE	OPT.	MITIAL RANGE	SATURAT.	TAN &	C T.S.F.	TAN #	T.S.F.	TAN 0	T.S.F.	Ti
MC-855-3	,	CH	62	19	43	95.6	99-0-103-2	24,8	23.4-25.9	100	0.05	i#0	6.306	0.5	0.249	0.25	
NC-079-3	4.	CH	59	9	40	97,1	99.4-102.2	23.7	22.4-24,4	89-10 6	0.059	0.96	0.269	ູດາ	. O.87	0.25	
PPE-92-1	13-18	CH	66	19	47	1 .	93.5-IOL3		24.3-25.5	, 79	0	L75	0.259	0.55	0.374	0.26	
ļ	6.3-6.8	СН	12	20	52		100.9-102.2		22.9-23.2	93-96	0,944	L38	0.41	0.54	0.394	0.3	•
1	13.8-5.0					I	101.2-104.7		21.6-23.6	*		•	•	•	•	•	e
[30.8-39.3	CH	78	22	56	1	90,-99.5		25,4-25,6	50-55	0.061	LOS	0.306	0.50	0.394	0.4	
PPE-95-1	0.0-0.5	CH	57	19	38		99.1-100,2		25,1-25,8	97-98	0.096	0.5%	0.466	, פיס	0.364	0.13	
L.	[17-H						9.8-95.4		20.5-31,2	100	0.158	L05	0.05	0.25	0.222	0.25	•
U-744	6.4-6.9	CH	77	19	58		93.4-96.7		28,4-29,2	99-100	0.013	i,48	0.26	0.34	0.49	0.45	
(10.5-1.0	CH	70	*	. Š4 `	·,	103.7-106.9		20.9-22.3		0	150	3.257	0.40	0,54	0.60	•
L	20J-20.6	CH	#3	19	64	Ì	99.8-100.6		23.7-24.2	•	٥	. 110	0.325	. 0.21	0,173	0.30	


MOTE: EXCEPT FOR THE TO THE TO THE MORE'S CHACLES FOR EACH SAMPLE TEST THE TO THE MORE'S CHACLES FOR EACH SAMPLE TEST THE TO THE MORE'S STRENGTH PARAMETERS WERE DERIVED FROM THE POINTS PLOTTED AS DESIGNATED BY THE CORRESPONDING MOVE'S DIAGRAM.



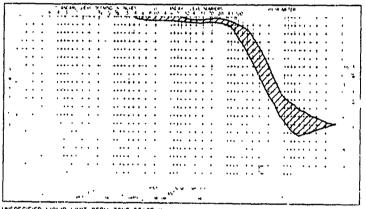

LIQUID LIMIT - 70 RANDOM ZONE STAGE II GRADATION LIMITS FOR RECORD CONTROL SAMPLES TESTED.

		PH:	SICAL	SOIL	CONS	TANTS	ė
MATERIAL		WFIGHT C.F.		0	DE:	ICH SHE	AR ST
			Q2.1D	ě	TAN .	C17.S.F3	•
BERM	15	. 10	0.45	0.00	0.00	ໍ່ວມວໍ່	2,3
HILLSIDE BORROW	125	あ	0.90	0.00	C.00	0.20	¥.3
VALLEY BORROW	125	, #S	0.90	0.00	ຳ ວ.ວວ	0.20	1.3
FOUNDATION OVERBURDEN	#5	#Ô	0.60	0.00	0.00	0.20	1.3
SHALE - PEAR	140	14G			´ •	•	•
SHALF - RESIDUAL	140	140	٠. '	٠ -	٠.	•	

D

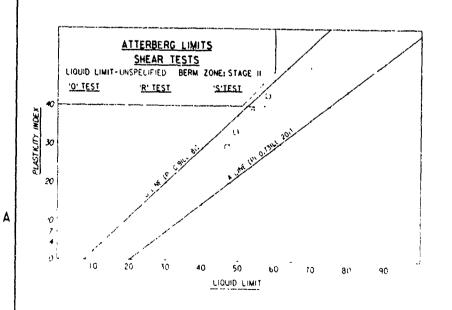
C

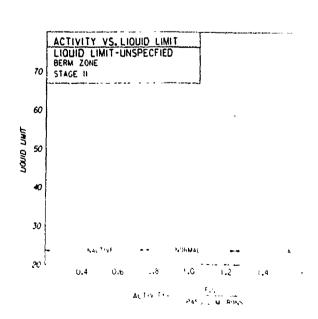
В

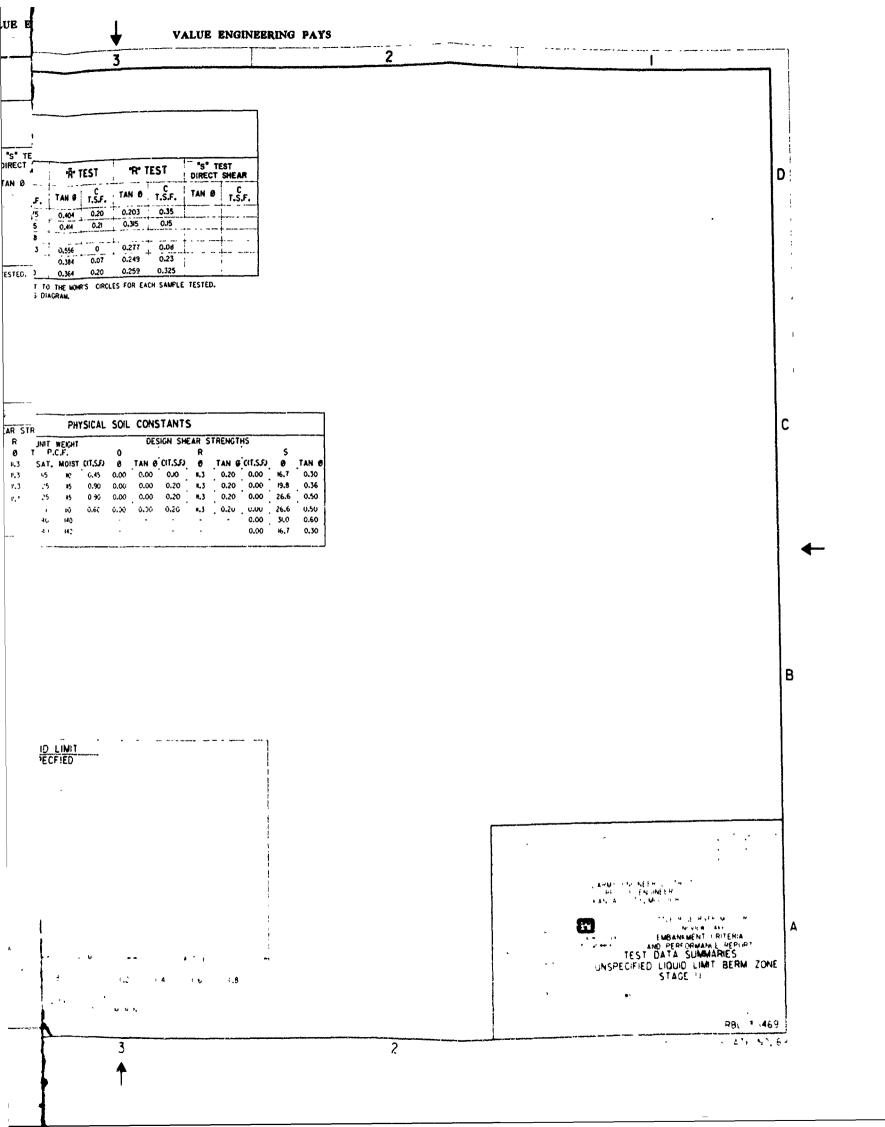

DATA ON RECORD CONTROL SAMPLES
STAGE IN UNSPECIFIED LIQUID LIMIT-BER', I ZONE

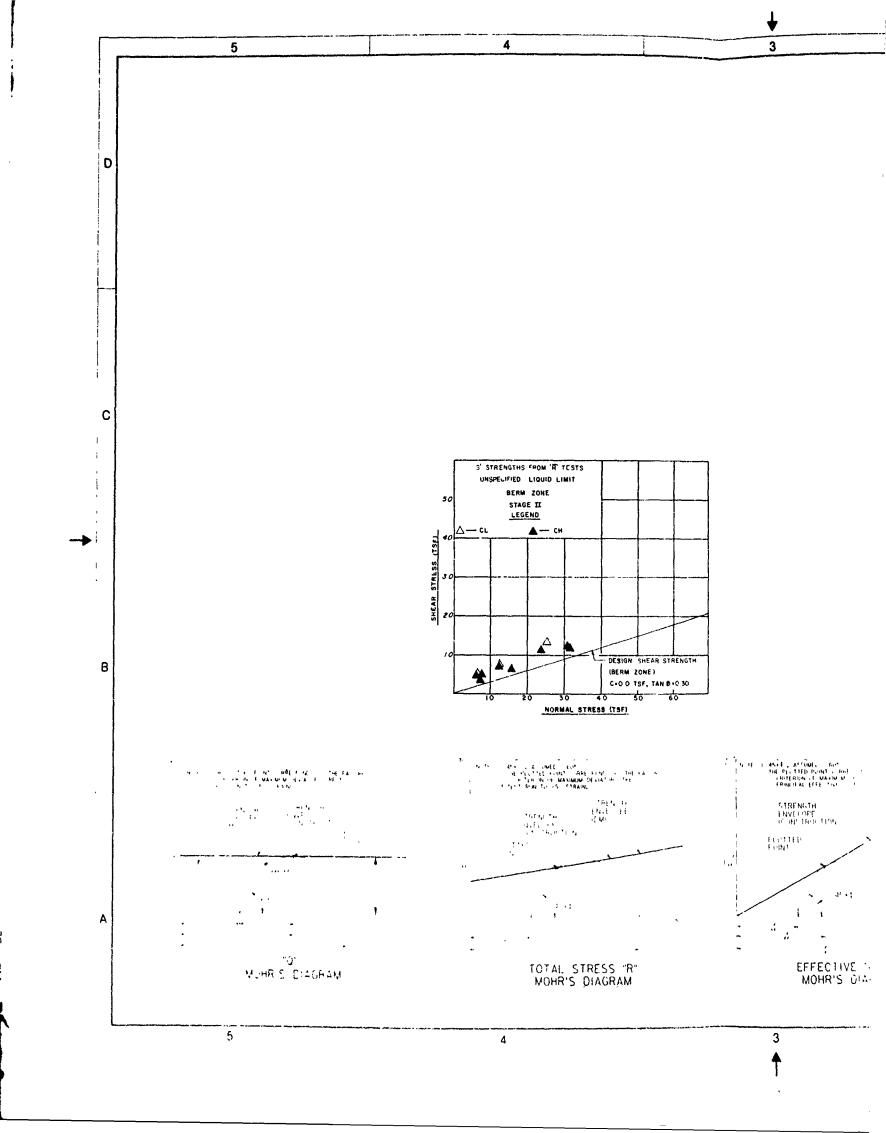
HOLE	SAMPLE		CLASSIF	ICATION		DR	DENSITY		WATER CONTEN	(T	ז י0י	EST	'Ř' 1	rest	'R' TE	ST	"S" T
NO	DEPTH	SYM.	L.L.	P.L.	PJ.	MAX.	INITIAL RANGE	0P1.	INITIAL RANGE	(%) SATURAT	TAN Ø	C T.S.F.	TAN Ø	C T.S.F.	TAN 0	C T.S.F.	TAN 0
RC-675-25		CH	58	15	43	99.9	95.0-103.4	21.8	21.1-21.7	75-90	0.259	0.75	0.404	0.20	0.203	0.35	}
RC-514-18		CL	49	16	33	100.3	103.3-105.7	20.3	19.4-20.7	83-90	0.296	1.25	0,414	0.27	0.315	0.15	
PF-93-10A	2.0-2.5	CL	38	16	22		96,2-96.8		26.7-27.5	95-100	0.052	1.38	+ .0.414	1			:
SACK I*		CL	47	18	29	96.8	91.6-92.1	21,7	24.1-24.7	80-81	G.013	0.53	0.556	0	0.277	0.08	
U-594	3.0	CH	56	16	40		97.5-101.5		22.6-26.1	92-96			0.384	0.07	0.249	0.23	
	13.0	СН	54	15	39	1 1	105.2-106.8		20.5-21.3	96-97	0,249	2.0	0.364	0.20	0.259	0.325	1

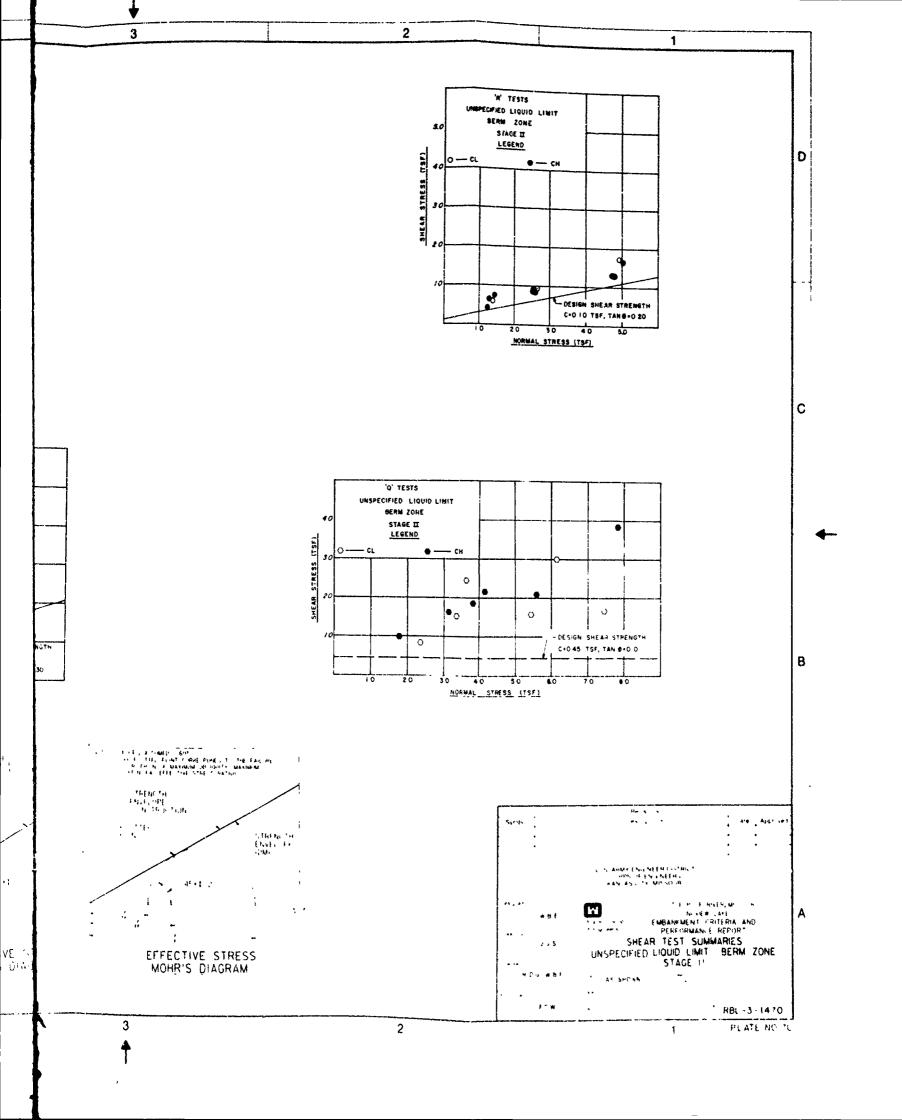
4

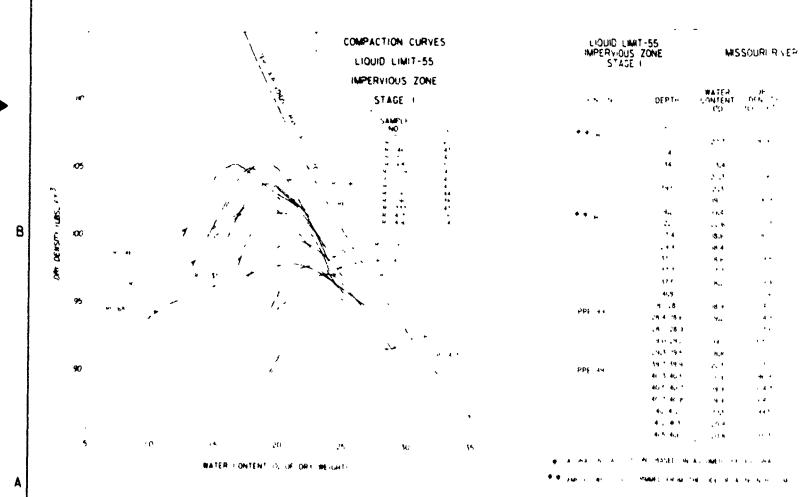

NOTE: EXCEPT FOR THE TOTEST, ALL SHEAR STRENGTH PARAMETERS PROVIDED ON THE SUMMARY TABLE ABOVE WERE DERIVED FROM A BEST FIT TANGENT TO THE MOHR'S CIRCLES FOR EACH SAMPLE TESTED THE TOTEST-EFFECTIVE STRESS STRENGTH PARAMETERS WERE DERIVED FROM THE POINTS PLOTTED AS DESIGNATED BY THE CORRESPONDING MOHR'S DIAGRAM.


* COMPOSITE SAMPLE FROM RIGHT ABUTMENT SEEP AREA




	PH	'SICAL	SOIL	CONS	TANTS	;	
				DES	IGN SHE	AR ST	
SAT.	MOIST	C(T.S.F)	Ø	TAN Ø	CIT.S.F)	Ø ·	
115	10	0.45	0.00	0.00	0.0	F.3	
125	15	0.90	0.00	0.00	0.20	8.3	
125	65	0.90	0.00	0.00	0.20	1.3	
85	10	0.60	0.00	0.00	0.20	£. *	
140	140	٠.	-	` -			
140	140						
	P. SAT. #5 #25 #25 #5	UNIT #EIGHT P.C.F. SAT. MOIST #5 #0 125 #5 125 #5 15 #0 140 #40	UNIT #EGHT P.C.F. SAT. MOIST CIT.S.F.) 15 10 0.45 125 15 0.90 125 15 0.90 15 10 0.60 140 140	UNIT #EIGHT P.C.F. D SAT. MOIST CIT.S.FJ Ø 115 80 0.45 0.00 125 45 0.90 0.00 125 65 0.90 0.00 125 80 0.60 0.00 140 140 -	UNIT wEIGHT ODES P.C.F. O SAT. MOIST CIT.S.F.) Ø TAN Ø 115 10 0.45 0.00 0.00 125 15 0.90 0.00 0.00 125 15 0.90 0.00 0.00 125 15 0.90 0.00 0.00 140 140	P.C.F. 0 TAN 0 CIT.S.F) 15 80 0.45 0.00 0.00 0.20 125 15 0.90 0.00 0.00 0.20 125 160 0.60 0.00 0.00 0.20 146 140 140	


UNSPECIFIED LIQUID LIMIT BERM ZONE STAGE II GRADATION L'MITS FOR RECORD CONTROL SAMPLES TESTED.



0

C

L	IOUIO LI	MT-55	MPERVX	ous zo	ME: ST	IGE I													
	NO CONT	ron: c	1140e E	- 		50	H CLA	SSIFICA	TION DAT	A			STAND	ARO CO	MPACTIO	N TEST		0	ENSITY
MECO	TO COM	: MUL 3/	HI LE		FIELD			h	URD. LAB	ORATG	RY		FIE	ELD	M.R.D	LAB	•	AND CO	DNE DA
NUMBER	STATION	RANGE	ELEV.	LL	Pi	CLASS	-	HEAR TE SPECIME STREET	Ñ	TΕ	COMPACTI ST SPEC	MEN	MAX. DRY DENSITY	-0.31.	MAX, DRY	OPT.	DRY DENSITY	COM- PACTION	WATE
	•••		•••				LL	Pi	CLASS	££.	PI	CLASS		CONT.	DENSITY (F.C.F.)	CONT.	P.C.F.	(%)	(%,
%(⋅3 5	92+65	0+060/8	805.5			Cir	65	43	(H	63	46	CH	96.2	23,7	97.2	23.5	96.6	99,4	28.0
* C 46	10-35	0+5u/a	≋ 7.0	42	. *	C	40	22	r.	43	27	LL	104.6	19,1	105.2	6.5	105.9	100.7	
RC -5 *	#+55	0+50/8	827.0	4	32	٤.	4	35	Ç	4.	27	′.	103.4	19.6	105.0	3.71	. 67.3	102~2	· 14
RC -63	69+20	0.00	#36.5	49		St.	50	30	***	5.	14	/ H	3P ;	23.	97,4	21.2	100.4	LEG!	24
RC 109	99-76	0+304/5	#35.0	44		۲,	46	38	C1	4	• •	r:	h • ·	9.7	03.0	9.0	109.3	106.0	.4 =
MC 155	44+50	0+5u e	445.0	47		٠.	44	24		4.	28		150	۰9.	102.2	* ,7	907.9	05.5	20
RC (7)	\$ 2 . 75	1+063 4	873,0	36		(46	5,		42		1	الا الا	. 5.	603.8	4,8	104.3	600.5	
40 197	51.25	0 46 4 s	e11.0	53		r •	57	4 ^	CH	44	26	۲.	5.1	٠,٠	99.1	21.1	100.5	100.8	٠.
AC 290	30 +20	2+500 4	83C	4;		٠.	43	2*		18	15		461	14	05.3	18.7	102.3	97.2	
₩ 333	101+05	2+20u s	941 4	44:		٧.	45	21		43	+	٠.	75.6	٠,٤	0.6	20.1	94.9	90.4	
RL 405	99+05	0.00	56.4 s	60		1.8	**	34	* PF	58	4	-	٠,٠	. 4	95.6	24.3	98.0	102.5	
e 06	101-32	0.554	. \$5.4	_ 56		, н	.56	3 e	-	44	34	· H	1		4. 1	24.2	104,7		

THE RE DRO CONTROL SAMPLES OF HE LIGHT OF APPLICATION THAN AN ORDER I WATER OF THE LUMBER PORTION OF THE LITTLE HOLD ON

5

4

[#] INDP URBEC DATA OBTABLED BY SVEHOURL MAISTIRE AND TENTOT SALE TO ALL AVAILABLE SHEER TEST SPECIALISTS. KLTS. DEF DEMONTES AND MATER "UNITENTS ARE UMPARED " MERIC THIS TO HE AND PER ENT COMPACTAIN AND WATER CONTENT PERCENT + OPTIMEME

NSITY	_

E EN

: 0/	, D CG	MPACTIC	N TEST		0	Ensity	AND MO	ISTURE	CONTE	T	
FATE	3	MRD	-	•	AND CO	NE DAT	A	*11	NOISTUR	BED DA	TA.
NTE (%	OPT. OIST. ONT.	MAX, DRY , ENSITY CP.CS.J	OPT. MOIST. CONT. (%)	DRY DENSITY P.C.F.J	COM- PACTION (%)	WATER CONTENT (%)	WATER CONTENT (+-%OPT)		COM- PACTION (%)	WATER CONTENT (%)	WATER CONTEN (+-%OPT
"	23.7	91.2	23.5	96.6	99,4	26.4	+3.3	96.6	99.4	27.4	+3.9
74	19.3	05.2	16.5	105.9	100.7	24	+4.6	107.0	IGL7	20.3	+3.8
,4:	19.8	105.0	17.6	107.3	102,2	19.0	+1,2	107.7	6.501	19.2	+1,4
21	23.4	97.4	24.2	100.4	1033	24,8	+3.6	99.6	102.3	23.6	+2,4
."	9.7	i03.0	19.0	109.2	106.0	19.9	+0,9	107.7	104.6	19.2	+0.2
	93	102.2	16.7	107.9	105.6	20.5	• 48	106.5	£4.2	20.6	•1,9
·	30.3	IC3.8	18.5	104.3	100.5	21,9	+3.1	. KOLL	97.4	24.3	+5.5
	245	99.7	24.3	100.5	8.00	23.8	•2.5	96.4	96,7	27.2	• •5.9
	٠.	(05.3	4.7	102.3	97.2	2U	•2.4	164,4	99.1	21.9	+3.2
	, t	10.6	20.3	94.9	30.5	22.8	+2.5	99.7	98.1	24.7	+4.4
	4 .	95.6	24.3	98.0	102.5	23,5	-0.8	99,9	104,5	23.0	
		31.1	22.2	104,7	107.2	19,7	-2.5	106.9	109.4	20.4	4,8

LIMIT-55 IQUS ZONE TAGE I

MISSOURI RIVER DIVISION LABORATORY DATA

DEPTH	WATER ONTENT (*)	GRY DENSITY (LBS/FT3)			ام	PI	SPECIFIC GRAVITY
•		105.0	100				
	22.5	\$1.6	85				
. 4	•	1070	98				
34	. 5,4	3,604	96				
	22.7	101,6	94	42	20	::	
141	ነኔ \$	IC4 *	91				
	14, 1	106 a	95				
٠.	1.4	16 1.2	95				
	. ь	102.5	99				2 64
***	8.6	106.1	92				2.62
• •	18,4	107.6	89				2.66
**	8.0	109.5	98				2,65
t		F	96				2.65
112	·e	109.4	91				2.62
4,4	22.7	101.4	97				2.63
4 4 1	18.9	6)4 8	87				,
4.4.28.4	9	104,8	88	42	17	25	
* 8 *	211,1	×03.6	89				
٠.٠.	19.	105 7	90				
3 5 4 4	-8.8	107.4	92	42	17	25	1
44 44 4	29.5	03,0	93	43	18	25	2.60
	20 €	~ €.9	79				
4 1 4	99	104.3	93				•
4 47 8	19.9	104.2	91				
4 4	20.5	99.5	85				
4,41	20.8	KKLO	89				'
4 + 4 +	.'0.8	101.3	90	49	16	33	2.60

* A SIMED SPECIFIC CREVITY OF 2.65

INF UP A 36 WICH DIAMETER BUCKET AUGER HOLE.

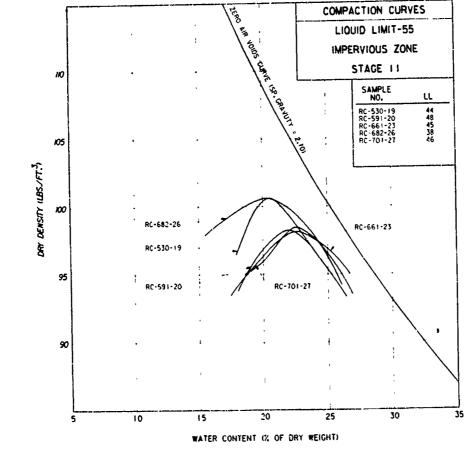
Core lapproved Revisions Descriptions U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS KANSAS CITY, MISSOURI LITTLE BLUE RIVER, MISSOURI
LONGVIEW LAKE
EMBANKMENT CRITERIA
AND PERFORMANCE REPORT
LIQUID LIMIT-55 IMPERVIOUS ZONE
STAGE I DENSITY AND
COMPACTION TEST SUMMARIES R.G.D. RD.T. Pict Scale Ceaton the, the RBL - 3-1471 ALLP. R.U.D.

PLATE NO. 71

D

C

В


В

A

LH	OUID LI	WT-55	IMPERV	IOUS	ZON	Et STAC	EH												
				T				NL CLASS	HFICA	TION DA	TA			STANDA	RO CO	MPACTION	Y TEST		Di
RECOF	SO CON.	TROL S	AMPLE	•		FIELD		-	N	I.R.D. LA	BORAT	ORY		FIE	LD	MRD	LAB	S	AND CO
	, t	:	;	:		•		SHE SI U-0/ST	AR TE	N	;	COMPACTA TEST SPECA	MEN	MAX. DRY		MAX. DRY	OPT, MOIST. CONT.	DRY DENSITY	COM- PACTION
NUMBER	STATION	RANGE	ELEV.	, t	L	PI	CLASS	u	PI	CLASS	LL	i n	CLASS		CONT.	DENSITY (P.C.F.)	(%)	(P.C.F.)	(%)
RC-530-19	94+25	10+504/	85.0		43	18	CL	48	32		44	26	. CL	104.0	22.0	100.6 98.3	20.6	97.5	. 102.3 99.2
RC-59-20	95+50	0+65u/	+	4	49	27 26	CH CH	55 46	40 30	CH	48	. 28	. a	100.5	22.5	1 98.1	22.7	99.2	103.1
RC-661-23 RC-682-26	∤	0+30u/ 0+25u/	· +		45	26	CĹ	1 44	28 33	. CL	38	. 25 28	, a	100.5 98.0	21.5	98.5	19.8	103.5 99.4	100.3
RC-101-27	99+30	1+850/8	865.0		44	. 22	CL	51	33	CH_	1								

^{**} LINDISTURBED DATA OBTAINED BY AVERAGING MOISTURE AND DENSITY VALUES OF PLL AVAILABLE SHEAR TEST SPECIMENS.

NOTE: ALL DRY DENSITIES AND WATER CONTENTS ARE COMPARED TO M.R.D. DATA TO OBTAIN PERCENT COMPACTION AND WATER CONTENT PERCENT 2 CPTIMUM.

			DEN	SITY	TEST
LIQUID LIMI	·			D. LAB	
SAMPLE	DEPTH	₩ (%)	DRY DENSITY (LBS/FT 3)	L.L.	P.L.
PC-53v 13		20.3	102.9	43	. 25
RC-591-20	•	24.5	97.5	49	55
RC-661-23		21.2	98.1	48	21
RC-682-26	•	17.7	98.6	45	19
RC-701-27	•	21.0	95.9	' 44	22

THE COMPACTION CURVES ARE BASED ON MISSOURI RIVER DIVISION LABORATORY STANDARD COMPACTION TESTS.

5

4

ם ו	<u>L_</u>														
in co	ANDA	URD CO	MPACTIO	Y TEST	, · · · · · · · · · · · · · · · · · · ·										
יט כני	FIE	LD	M.R.D	LAB	S	AND CO	NE DAT	A	*u	OISTUR	BED DA	TA			
COM- ACTION (%)	. DRY ISITY C.F.)	OPT. MOIST. CONT.	MAX. DRY DENSITY (P.C.F.)	OPT. MOIST. CONT. (2)	DRY DENSITY (P.C.F.)	COM- PACTION (%)	WATER CONTENT (%)	WATER CONTENT (+-%OPT)	DRY DENSITY (P.C.F.)	COM- PACTION (%)	WATER CONTENT (%)	WATER CONTENT (4-%OPT)			
99.2	4.0	22.0	- 100.ã	20.6	ю2.9	102.3	20.9	+0.5	100.0	99,4	20.7	0.			
KU	1.6	22.5	98.3	224	97.5	99.2	24.5	+2.4	IOLO	102.8	23.2	. •1.1			
103 1	0,5	22.2	98.1	22.7	99.2	iou	23.4	-0.7	99.6	101.5	23.8	. +1.1			
100.3	2.5	21.5	00.5	19.8	103.5	103.0	19.6	-0.2	101.5	101.0	18.9	-0.9			
	3.0	22.5	98.5	22.5	99.4	100,9	23.5	+1.0	98.1	99.6	23.4	+0.9			

			DEN	SITY	TEST	SUMMA	RY				
	IT-55 ZONE			D. LAB				M.R.C 1914) COO 38). LAB	ABE1	
	ОЕРТН	₩ (%)	DRY DENSITY (LBS/FT 3)	L.L.	P.L.	P,1.	W (%)	DRY DENSITY (LBS/FT 3)	L.L.	P.L.	۵.1.
1		20.9	102.9	43	25	18	20.7	100.0	48	'6	37
}		24.5	97.5	49	22	27	23.2	101.0	55	15	40
1		21.2	98.1	48	21	27	23.9	99.6	46	16	30
		17.7	98.6	45	19	26	18.9	101.5	44	16	28
•		21.0	95.9	44	22	22	23.4	98.1	51	18	31

Revisions Opscriptions Date Approved U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS KANSAS CITY, MISSOURI LITTLE BLUE RIVER, MISSOLIRI
LONGVIEW LAKE
LONGVIEW LAKE
EMBANKMENT CRITERIA
AND PERFORMANCE REPORT
LIQUID LIMIT-55 IMPERVIOUS ZONE
STAGE II DENSITY AND
COMPACTION TEST SUMMARIES Designed by: R.G.D. A.L.P. Scule AS SHOWN Sizom thad Eyi R.C.D. RBL-3-1472

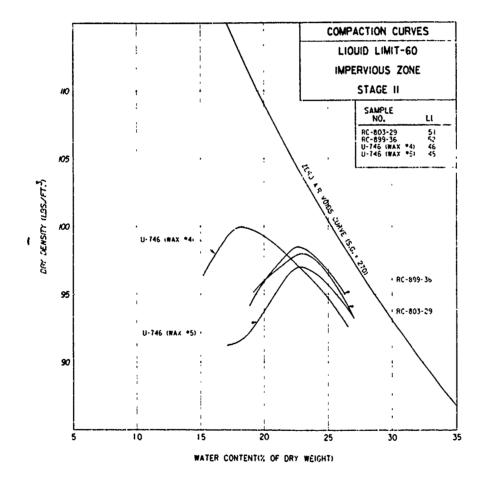
PLATE NO. 72

D

VALUE

LI	OUID LI	AT-60	MPERVI	ous zo	NE; STA	GE N											
						sc	NL CLA	SSIFICAT	LION DY.	TA			STANDA	RO CO	MPACTION	TEST	:
RECOF	40 CON	TROL SA	MPLE	-	FIELD	-		M	.R.D. LA	BORATO	ORY		FIE	LD	M.R.D.	LAB	SANC
NUMBER	STATION	RANGE	ELEV.	u	Pi	CLASS		HEAR TES SPECIMEN ISTURBED SA PI	i	T(LL	COMPACTIC EST SPECII SACK SAMPLE PI	MEN	MAX. DRY DENSITY (P.C.F.)	OPT. MOIST. CONT.	MAX. DRY DENSITY (P.C.F.)	OPT. MOIST. CONT. (%)	DRY CO DENSITY PAC (P.C.F.)
RC-803-29	99+00	0+90u/s	894.0	54	31	CH T	53	29	СН	Şi	29	CH	98.9	23.3	98.0	23.2	96.1
RC-899-36	98+00	1+50u/s	898.0	64	43	СН	!	; 1	1 .	52	34	CH	99.3	24.2	98.5	22.7	. 104.5
U-746*4	96+40	1+70u/s	828.0	i	Ι	I	43	25	CL	46	. 29	CL		•	100.0	18.3	a .
U-746-05	98+40	I+70u/s	826.3	T [1]	43	25	CL	45	26	CL	•	•	97.2	22.2	

^{**} UNDISTURBED DATA OBTAPHED BY AVERAGING MOISTURE AND DENSITY VALUES OF ALL AVAILABLE SHEAR TEST SPECIMENS.


NOTE: ALL DRY DENSITIES AND WATER CONTENTS ARE COMPARED TO M.R.O. DATA TO OBTAIN PERCENT COMPACTION AND WATER CONTENT PERCENT 2 OPTIMAM.

D

C

·B

i A

THE COMPACTION CURVES ARE BASED ON MISSOURI RIVER DIVISION LABORATORY STANDARD COMPACTION TESTS.

DENSITY LIQUID LIMIT-60 K.C.D. LAB IMPERVIOUS ZONE STACE II DRY SAMPLE DEPTH DENSITY (%) (IBS/FT3) P· 433 23 25.6 1.89 10 6 71. L 74+ J 16 '2.3-728

^{**} HARVARD MINIATURE COMPACTION TEST

LUE

LAB

SAND	ANDA	RO CO	MPACTIO	TEST		D	ENSITY	AND MO	ISTURE	CONTE	NT	****
	FIE	LD	MJRJD	LAB	S	AND CO	NE DAT	A	*u	NDISTUR	BED DA	TA
1. ,		OPT. MOIST. CONT. (%)	MAX, DRY DENSITY (P,C,F,)	OPT. MOIST. CONT. (%)	DRY DENSITY (P.C.F.)	COM- PACTION (%)	WATER CONTENT (2)	WATER CONTENT (+-XQPT)	DRY DENSIT - (P.C.F.)	COM- PACTION (%)	WATER CONTENT (%)	WATER CONTENT (+-20PT)
	\$8.9 \$9.3	23.3 24.2	98.0 98.5	23.2 22.7	96.1 104.5	د.90	25.6 23.1	+2.4 +0.4	IOL0	. 1031	22.7	0.5
] -		97.2**	18.3 22.2			•		105.6 99.0	105,6 101,9	263 2 5.6	+2 B +3.4

		DE	NSITY	TEST	SUMMA	RY				
UID LIMIT-60 ERVIOUS ZONE	; !	ĸ,ċ,	D. LAB				M.R.	D. LAB	and region of	•
MPLE DEPTH	• (%)	DRY DENSITY (LBS/FT 3)	114.	P.L	P.I.	W (Z;	DENSITY	T	T P.L.	P.I.
- *		96 LICB251	51	۱,	<u>.</u>		12.6	L 41	1.4	
, , ,						23.3	4.4			

U.S. ARMY ENUMELER DISTRICT
CURPS OF ENGINEERS
KANTAS CITY, MISSOURI
LONGVIEW LAKE
LONGVIEW LAND
LOUD LIMIT-60 IMPERVIOUS ZONE
STAGE II DENSITY AND
COMPACTION TEST SUMMARIES

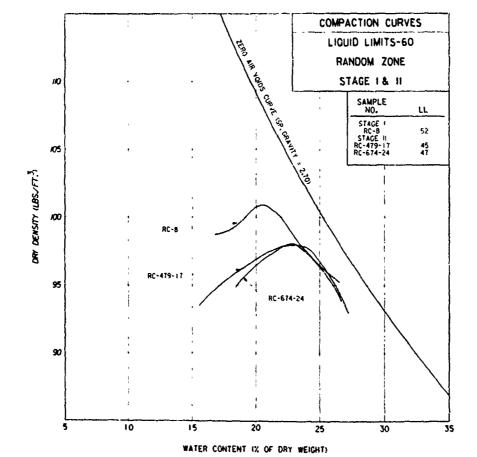
ALLP. "AS JACIEN"
RIGGE II DENSITY AND
COMPACTION TEST SUMMARIES

RIGGE II DENSITY AND
RIGGE II DENSITY AND
COMPACTION TEST SUMMARIES

RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSITY AND
RIGGE II DENSI

2

PLATE NO. 73


С

В

	LIQUID	LIMIT-60	RANDO	M ZON	E; STAG								~				
				•		SC	DEL CLA	SSIFICA	TION DA	TA			STANDA	RO CO	MPACTIO	N TEST	
RECO	RD CON	IROL S	MPLE		FIELD	. ,-		M	JR.D. LAI	BORAT	DRY		FIE	LD	M.R.D	LAB	SA
		04966	e ev	LL	PI	CLASS		SPECIME!	N		COMPACTI EST SPEC		MAX, DRY	OPT.	MAX. DRY	OPT. MOIST. CONT.	! DRY DENSITY !
MUMBER	STATION	HARRE	ELEY.	:	"	CLASS	LL	PI	CLASS	נו) PI	CLASS	(P.C.F.)	CONT.	(P.C.F.)	(2)	(P.C.F.)
RC-8	92+00	1+30u/s	821.7	50	1	_CH	Si	36	СН	52	35	CH :	05.2	20.3	8.00	20.4	105.6
	ļ · · ·				ļ		† 	-	-		;			 			:
	LIOUIO	LMAT-6	O RAND	OM ZOI	E STAC	E II	-	<u> </u>	<u> </u>	1	<u>.</u>	·			1		
RC-479-17		1+80u/a	848.0	55	32	СН	52	34	Сн	45	. 29	CL	98.6	22.5	97.8	22.7	99.5
PC-674-24	94+75	1+10u/s	\$61.5	55	33	CH	56	41	CH	47	34	CL	100.8	21,0	96.0	22.8	102.4

^{*}UNDISTURBED DATA OBTAINED BY AVERACING BIOISTURE AND DENSITY VALUES OF ALL AVAILABLE SHEAR TEST SPECIMENS.

NOTE: ALL DRY GENITIES AND WATER CONTENTS ARE COMPARED TO M.R.D. DATA TO OBTAIN PERCENT COMPACTION AND WATER CONTENT PERCENT COPTIMUM.

LIQUID LIMI RANDOM STAGE II	ZONE		
SAMPLE	ELEV.	# (%)	DRY DENSIT
RC-479-17	0.818	24.3	98.4
RC-674-24	861.5	20.6	97.4
PPE-94-1	852.5	•	•

A SHITISH WAS FULL ON

THE COMPACTION CURVES ARE BASED ON MISSOURI RIVER DIVISION LABORATORY STANDARD COMPACTION TESTS.

C

В

C 4.5	STANDA	RO CO	MPACTIO	Y TEST		D	ENSITY	AND MO	ISTURE	CONTEN	eT	
TAR	FE	LO	M.R.D	LAB	S	AND CO	NE DAT	A	*u	IDISTUR	BED DA	TA .
RY SITY P C.F.)	MAX, DRY DENSITY (P.C.F.)	MOIST. CONT.	MAX, DRY DENSITY IP.C.F.J	OPT. MOIST. CONT. (2)	DRY DENSITY (P.C.F.)	COM- PACTION (%)		WATER CONTENT (+-%OPT)		COM- PACTION (%)	WATER CONTENT (%)	WATER CONTENT (+-%OPT)
<i>3.</i> 10	105.2	20.3	100.8	20.4	105.6	104,8	22.5	•2,	100.6	99.8	24.3	+3.9
		* * **			-	} { } 				-		
3.5												
.4	93.6	22.5	97.8	22.7	99.5	101.7	23.8	+1,,	104.4	106.8	22.3	-0.4
	8,001	21.0	98.0	22.8	102.4	104.5	22.4	-0.4	98.6	100.6	24.3	+1.5

DRY
DENSITY
(LBS/F)
98 4
97.4,

3

			DEN	NSITY	TEST	SUMMA	RY				
LIOUID LIM RANDOM STAGE II	T-60 ZONE		X.C.0	LAB				M.R.I	D. LAB	,	
SAMPLE	ELEV.	W (%)	DRY DENSITY (LBS/FT 3)	L.L.	P.L.	P.I.	₩ (%)	DRY DENSITY (LBS/FT 3)	L.L.	P.L.	۴,۱,
R(-470-17	818.0	24.0	98.4	53	22	31	22.3	104.4	52	18	34
RC-674-24	861.5	20.6	97.5	55	22	33	24.3	98.6	56	15	41
*PPE-94-1	852.5						23.7	99.4	53	17	36

Symbol Descriptions Date Approved

U.S. ARMY ENGINEER DISTRICT
CORPS OF ENGINEERS
KANSAS CITY, MISSOURI

Designed by:

R.G.D.

Drown by:

Checked by:

A.L.P.

Scolet AS SHOWN

Dote:

R.G.D.

R.G.D.

R.G.D.

R.G.D.

R.G.D.

R.G.D.

R.G.D.

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

Dote:

R.G.D.

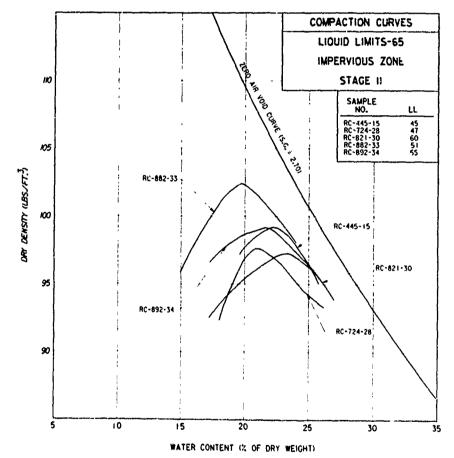
Dote:

R.G.D.

2

PLATE NO. 74

В


D

В

L	IOUIO LI	MT-65 (MPERVI	ous zo	NEI STA	IGE N												
5500	20.000					SC	DL CLA	SSIFICA	TION DAT	TA.			STANDA	AD CO	MPACTIO	N TEST		
HECUI	NU CON	TROL SA	MP-LE		FIELD			N	LR.D. LAE	CRATO	XRY		† - , FIE	LD	MRC	. LAB	S	ANC
NUMBER	STATION	RANCE	ELEV.	LL	PI	CLASS	1	HEAR TE SPECIME STURBED SA	N I	TE	COMPACTION ST SPECI	MEN	MAX. DRY DENSITY	OPT. MOIST. CONT.	MAX. DRY DENSITY	OPT. MOIST.	DRY DENSITY	C(
NOMBER	71615	name.	etev.		"	CLASS	u	Pt	CLASS	LL	PI	CLASS	(P.C.F.)	CONT.	(P.C.F.)	CONT.	(P.C.F.)	PAC
RC-445-15	100+10	2+30u/s	0,266	49	27	a	41	23	CL	45	28	-ci	99.4	23.0	99.2	22.7	102.4	, K
RC-724-28	90+20	0+054/8	874.0	55	30	CH	55	38	СН	47	32	CL	97.5	24.2	97.7	20,7	97.4	' c
RC-821-30	93+20	0+10d/s	900.0	56	34	CH	56	31	CH	60	43	t CH	99.4	24.3	97.3	23,3	98.2	, It
PC-882-33	106+15	0+06d/s	921.0	43	27	α	49	33	CL	54	37	CH	102.2	23.0	102.4	19.7	98.1	٠ ډ
RC-892-34	99+75	0+10d/s	923.5	53	34	CH		T	1	55	40		103.0	22.3	99.2	21.5	103.8	† K

^{**} UNDISTURBED DATA OBTAINED BY AVERAGING MOISTURE AND DENSITY VALUES OF ALL AVAILABLE SHEAR TEST SPECIMENS.

NOTE: ALL DRY DENSITES AND WATER CONTENTS ARE COMPARED TO MAR.D. DATA TO OBTAIN PERCENT COMPACTION AND WATER CONTENT PERCENT 2 OPTHIMM.

THE COMPACTION CURVES ARE BASED ON MISSOURI RIVEN DIVISION LABORATORY STANDARD COMPACTION TESTS.

			DE	YSITY
LIQUID LIM IMPERVIQUE STAGE (I			к.с	.D.L AB
SAMPLE	DEPTH	W (%)	DRY DENSITY (LBS/FT 3)	L.L.
RC-445-15		22.6	102 4	44
RC-724-28	•	23.9	96.4	55
RC-821-30		24.7	98.2	54

5

				u TECT	1		ENSITY	AND MO	UC TI IOC	CONTER		•
	STANDA	AD CO	MPACTIO	4 1521	l		CM2H1	AITU MU	13 I UNE	CONTE	••	
SANC	FIE	LD	MRD	. LAB	S	AND CO	NE DAT	A	*u	IDISTUR	BED DA	TA
Y PA(MAX, DRY DENSITY (P.C.F.)	OFT. MOIST. CONT.	MAX. DRY DENSITY (P.C.F.)	OPT. MOIST. CONT. (%)	DRY DENSITY (P.C.F.)	COM- PACTION (%)	WATER CONTENT (%)	WATER CONTENT (+-%OPT)	DRY DENSITY (P.C.F.)	COM- PACTION (%)	WATER CONTENT (%)	WATER CONTENT (+-%OPT)
, K			<u> </u>	22.7	102.4	103.2	22,6	-01 -	105.9	106.8	21.0	-17
	99.4	23.0	99.2			•		ļ — — ·		•		
· 1/	97.5	24.2	97,7	20.7	97.4	99.7	25.2	+4,5	98.2	100.5	23.9	+3.2
٠,	99.4	24.3	97.3	23.3	98.2	100.9	24.7	+1,4	100.4	103.2	24.8	+1.5
, ,	102.2	23.0	102.4	19.7	96.1	95.8	22.4	+2.7	104,1	10L7	21.2	+1,5
	103.0	22.3	99.2	21.5	103.8	104.6	20.3	-1.2		!	_	•

NSITY				DEN	ISITY	TEST	SUMMA	RY				
	LIQUID LIM			K.C.	D.LAB				M.R.(D. LAB		
1.1.	SAMPLE	DEPTH	W (%)	DRY DENSITY (LBS/FT 3)	L.L.	P.L.	P.I.	W (½)	DRY DENSITY (LBS/FT 3)	L.L.	P.L.	P.I.
55	RC-445-15		22.6	102.4	49	27	22	21.0	105.9	41	18	23
5r	RC-724-26		23.9	96.4	55	25	30	23.9	98.2	, 55	17	38
	PC-821-30	_	24.7	98.2	56	22	34	24.8	100.4	56	25	31

Revisions] Nate [Approve IJ.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS KANSAS CITY, MISSOURI LITTLE BLUE RIVER, MISSOURI
LONGVIEW LAKE

OF LONGVIEW LAKE

OF LONGVIEW LAKE

OF LONGVIEW LAKE

AND PERFORMANCE REPORT

LIOUID LIMIT-65 IMPERVIOUS ZONE

STAGE II DENSITY AND

COMPACTION TEST SUMMARIES R. 17.0. AS SHOWN R.G.D. RBL - 3-1475 PLATE NO. 75

2

В

DENSIT

K.C.D. L 18

DRY DENSITY

(LBS/FT3)

976

91.

96.3

LIQUID LIMIT-65

RANDOM

STAGE II

SAMPLE

R: 452 16

R. 592-21

R" 659-22

PHE 43-12 5.4 5.9 PFF 35-1 18.8 19.3

ZONE

DEPTH

(%)

23.6

22.4

19.2

D

C

В

A

_	
7	

	LIQUID I	LIMIT-65	RANDO	M ZON	E STAG	E II												
05.00		TD01 6	440. F			SC	CIL C	CLASSIFI	CATIC	N DAT	Α			STANDA	RD CO	MPACTIO	N TEST	<u></u>
RECO	SD CON.	HOL S	AMPLE		FIELD				M.R.	D. LAB	ORATO	RY		FIE	LD	M.R.D	LAB	
	STATION	044105	F: F.		Pi	CLASS	•	SHEAR				COMPACT ST SPEC		MAX, DRY	OPT.	MAX, DRY	OPT.	DR DEN
NUMBER	STATION	RANGE	ELEV.	LL	PI	CLASS	L	L P	1 4	CLASS	LL	PI	CLASS	(P C.F.)	CONT.	DENSITY (P.C.F.)	CONT.	DEN. (P.C.)
RC-452-16	91+20	0+60d/s	820.0	53	. 29	СН	` 5·	4 ' 3	8	CH .	46	31		100.4	24.1	100.2	21.6	90
RC-592-21	95+10	1+100/8	825.5	54	33	СН	6	2 4	6	CH	47	33		101.0	22.8	97.5	22.6	ų.
RC-659-22	95+70	2+60d/s	849.0	50	32	' сн	5	7 '4	i	СН	47	31	CL	99.5	22.0	99.7	20.8	9-

^{**} UNDISTURBED DATA OBTAINED BY AVERAGING MOISTURE AND DENSITY VALUES OF ALL AVAILABLE SHEAR TEST SPECMENS.

NOTE: ALL DRY DENSITIES AND WATER CONTENTS ARE COMPARED TO M.R.D. DATA TO OBTAIN PERCENT COMPACTION AND WATER CONTENT PERCENT; OPTIMUM.

	סגו	TERO VOISS LIVE IS	COMPACTION CURVES LIQUID LIMIT-65 RANDOM ZONE STAGE II
	ю5	TERO NOWS LINGTE SO CHAMING THE	SAMPLE NO. LL RC 452-16 46 RC-592-21 47 RC 659-2 47
DAY DENSITY (LBS/FT. ³)	ю		
DAY	95	RC 452 16 RC 659 22	
	90		
		10 15 20	25 30 35
		WATER CONTENT 1% OF DR	Y WEIGHT)

THE COMPACTION CURVES ARE BASED ON MISSOURIER FOR DIVISION LABORATORY STANDARD COMPACTION TESTS

	STANDA	STANDARD COMPACTION TEST DENSITY AND MOISTURE CONTENT										
		LD		. LAB		AND CO	NE DAT	'	* ul	NDISTUR	BED DA	ATA
DR DEN . (P.C.)	MAX, DRY DENSITY (P,C F.)	OPT, MOIST, CONT,	MAX. DRY DENSITY (P.C.F.)	OPT MOIST, CONT.	DRY DENSITY (P.C.F.)	COM- PACTION (½)	WATER CONTENT (%)	WATER CONTENT (+-%OPT)	DRY DENSITY (P.C.F.)	COM PACTION (%)	WATER CONTEN	
9	90.4	241	100 2	2'.6	97.6	97.4	23.6	+2.0	104.9	7- 7	2.4	
4	ių s	22.8	915	22.6	97.3	99 3	22.4	0.2	97 8	eng.	.44	,
4-	34 E	22 fr	99 7	20.8	30 *	99.0	20.3	-0.5	20.0	F20		

ENSIT				DEI	SITY	TEST	SUMMA	RY					
) [AP	MOGNA ANDOM	VIT-65 ZONE		K.C.D. (-AB				M.R.C	LAB			•
	vAr[[DEPTH	(*)	DRY DENSITY (LBS/F; 3)	1.1.	P.L.	P1.	※ (次)	DRY DENSITY LBS FT 3)	· • i	ti Put	r	
	t	****	** t	376	53	24	, .d .	2 - 4	1,49	٠.	٠.	16	
			ς 4	3,				>4,r	31.2	ħ,		4.	
	1.7		1	4. 3	5.	23	80	21, €	3 + 4	£			
	Pt it	54 1 9						25 1	a7 4				
	P+ 45	2 x , 1						, o 9	4+4				

U.S ARMY ENGINEER DISTRICT
CORPS OF ENGINEERS
KANSA - CITY, MISSOURI

LITTLE BLUE RIVER MISSOURI
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW LAKE
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONGVIEW
LONG

2

PLATE NO. 76

D

C

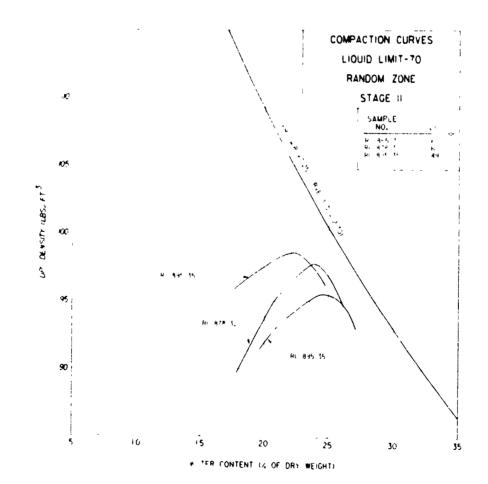
В

DENSI

LIQUID LIMIT-70 RANDOM ZONE; STAGE II

5

D


C

В

RECOR	RO CON	TROL SA	AMPLE			SO	L CLAS	SSIFICA	TION DAT	A			STANDA	RD CO	MPACTIO	N TEST	
	-				FIELD			N	A.R.D. LAB	ORATO	RY		FIE	LD	M.R.D	. LAB	SAN
MUMBER	STATION	RANGE	ELEV.	Lı	PI	rlass		HEAR TE SPECIME			COMPACT ST SPE	"ILACA"	MAX. DRY		MAX. DRY	OPT.	DRY DENSITY PA
	• • • • • • • • • • • • • • • • • • • •		666.,	••	• •	•	LL	PI	CLASS	LL	PI	CLASS	DENSITY (P.C.F.)	CONT.	DENSITY (P.C.F.)	CONT.,	(P.C.F.)
RC 855 3I	94+00	0+30d s	909	65	4i	^H	62	43	CH	62	46	CH	95.5	26,0	95.6	24.8	97.5
PC 878 32	86 • 5	n+22u s	919 "	ы	40	r#	40	40	(H	60	44	СН	95,5	25.5	97 7	23.7	100 €
RC 895 35	W2+90	9+90u s	+ 4 .	5.	35	ГĦ				49	16	CL	102 €	20.6	98.7	22.5	109.0

[#] UNDISTURBED DATA OBTAINED BY AVERAUMU MINISTURE AND DENSITY VALUES OF ALL AVAILABLE SHEAP TEST SPECIMENS.

NOTE, ALL DRY DENSITES AND WATER SHIENT, ARE COMPARED TO MIRLO, DATA TO BEAUTH PERCENT COMPALTION AND WATER CONTENT PERCENT SPEAKING.

THE FIRMPA TING CHIVES ARE BASED IN M. SOUTH RIVER DIVISION CABINATORY CANDAND COMPACTION TO T

LIQUID LIMIT-70 RANDOM K. O STAGE H DRIT DENSIT (SAMPLE DEPTH (%) 24.9 . | w = 'R 32 24.0 130, 1996-32 1 13.8-14.3 . he E 34 0 0-0.5

DENSITY AND MOISTURE CONTENT ANDARD COMPACTION TEST SAN *UNDISTURBED DATA M.R.D. LAB SAND CONE DATA FIELD MAX, DRY MOIST.
DENSITY CONT.
(P.C.F.) (%) 1Y 51TY F .F.' DRY COM- WATER WATER DRY COM- WATER WATER DENSITY PACTION CONTENT CONTENT DENSITY PACTION CONTENT CONTENT (P.C.F.) (%) (%) (4-%OPT) (P.C.F.) (%) (%) (4-2OPT) 97.5 100.6
 102.0
 24.9
 +0.1
 104.0
 108.8
 22.5
 -2.3

 103.0
 24.0
 +0.3
 100.7
 103.1
 24.4
 +0.7
 24.8 95.6 26.0 23.7 97.7 25.5 109.0

.5 76

).C

DENSI

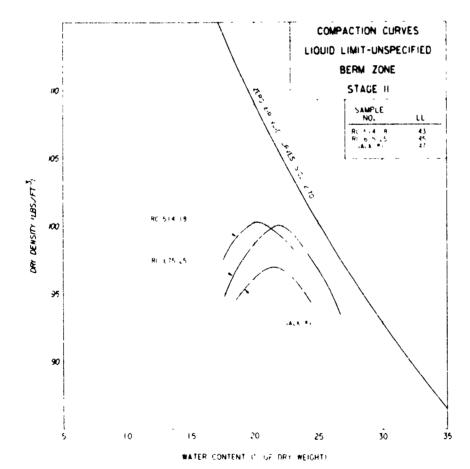
3,

			DEN	YSITY	TEST	SUMM	ARY				
LIUUID LIM RANDOM TTAGE II	IT-70 ZONE		K.c.	O. LAB				M.F	D. LAB		
SAMP_E	CEPTH	W	DENSITY LEBS/FT 3)	La.	F.L.	P.1	C.	DENSITY] L.L.) P.C.	P.I.
F'-RF!		24,9	97 5	65	24		.25	04.0	ъ.	٦ ،	•
2" A"A 10		24 0	190.€	61	,		24,4	1.00			
, st 9.	3.9- 4.3						24,4	98.0			
PFE 35	J C-0.5						25.3	97.2			

Revision : Descriptions U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS KANSAS CITY, MISSOURI LITTLE BLUE RIVER, MISSOURI
LONGVIEW LAKE
EMBANKMENT CRITERIA
AND FERFORMANCE REPORT
LIQUID LIMIT-70 RANDOM ZONE
SYAGE II DENSITY AND
COMPACTION TEST SUMMARIES 8,60, RBL-3-1477

PLATE NO. 77

В


C

В

A

r-										
1	1.1	OI IIO	I MAT.	. MCDC	CREU	REGA	4 7	ONE .	STACE	í

1	LIO	JID LIMI	I-UNSM	EC# REU	DE PRINT	COME! 2	IAUE .											·• -
						•	so	L CLA	SSIFICA	TION DAT	'Α			STANDA	ARD CO	MPACTIO	N TEST	•
HE	CO	ED CON	TROL S	MPLE		FIELD			N	LR.D. LAG	ORATO	ORY		FIE	LD	M.R.D	LAB	SANS
	ME D	STATION	PANCE	FLEV.	ŁL	Pi	CLASS	S *4	HEAR TE SPECIME	ST N Meri		COMPACYK EST SPECI		MAX DRY	OPT. MOIST	MAX. DRY DENSITY	OPT. MOIST. CONT.	DRY DENCT: A (PCF
	,	2						LL	PI	CLASS	el.	PI	CLAS'	PI.	(7,	(P.C.F.)	(%)	(P. f
PC SH	4 18	96+56	2+350/8	853.5	47	••	1.6	49	32	č١	43	. t		17	. •	100 3	•	
PC 67	5 25	93+30	2+20c s	864 C	55	31	1 H	58	43	ÇH	45	,		4 4	8	99.9	C1.A	1-
SACK	H	RIGHT	ABUT.	SEEP		_		•1	?9		÷ 47	_ 2)				¥.*	h	

TANDARD CHARGE OF THE PARTY OF

DENSITY TE

LIGHT MIT INSPEC BEPM 7.9**1Æ** FID LAH STAGE DENSITY (LBS/FT 3)

5

ANDARD COMPACTION TEST DENSITY AND MOISTURE CONTENT

SANC FIELD M.R.D. LAB SAND CONE DATA **UNDISTURBED DATA

DRY MOIST MAX. DRY MOIST, DRY COM- WATER WATER DRY COM- WATER WATER WATER DRY PACTION CONTENT CO

DENSITY TEST SUMMARY MIT UNSPEC. F C.D. LAB ZONE M.R.D. LAB DRY
DENSITY
LL. P.L. P.I.

1.85 FT 3

5. 22 30

1.20 34 ME NO CHATRIC LINES THREE DRY DENSITY P.I. (%) LBS/FT 3 19.3 104.7 13 54 20 34 58 99 4 43

3

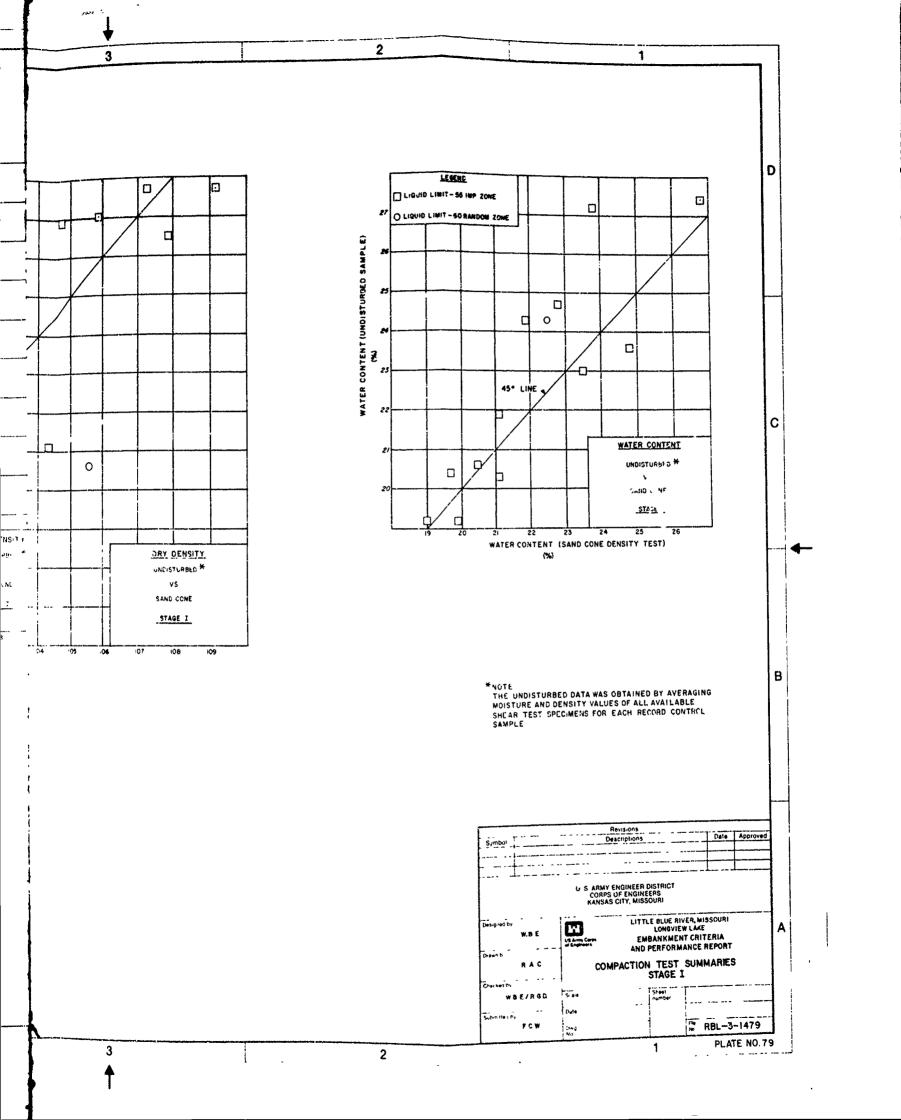
U.S. ARMY ENGINEER DISTRICT
CORPS OF ENGINEERS
KANSAS CITY, MISSOURI

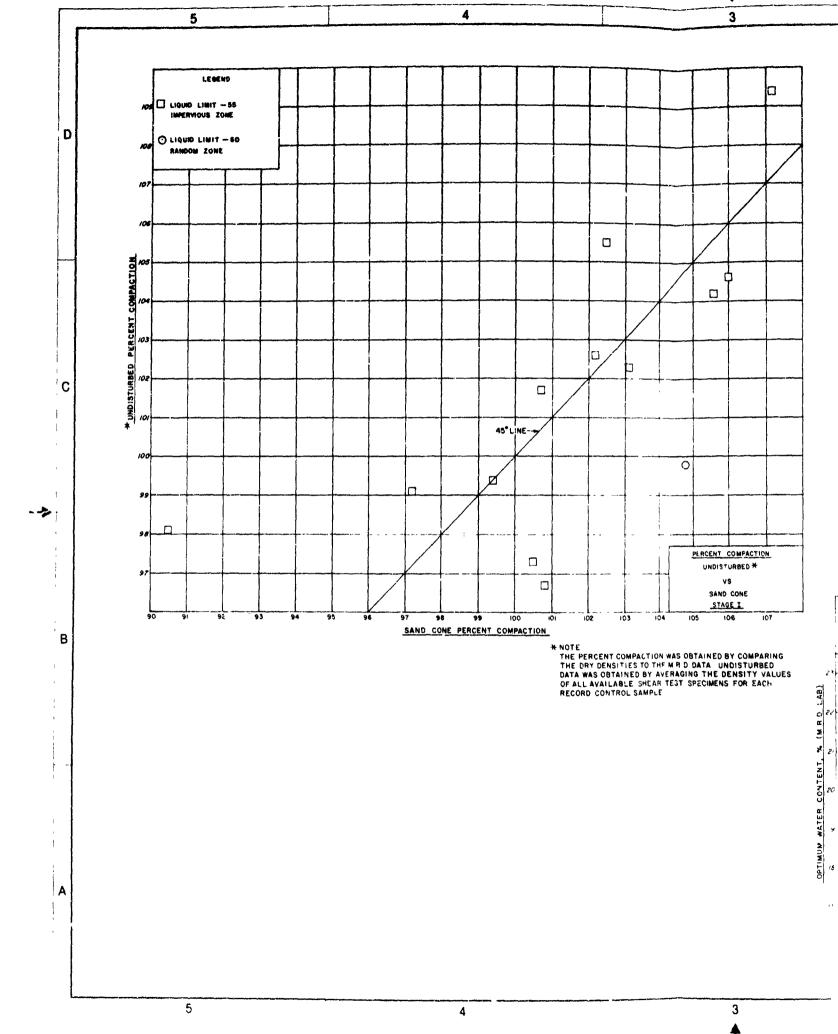
LITTLE BLUE RIVER, MISSOURI
LONGVIEW LAKE
EMBANKMENT CRITERIA
AND PERFORMANCE REPORT
BERM ZONE (NO SPECIFIED LIQUID LIMIT)
STAGE II DENSITY AND
COMPACTION TEST SUMMARIES

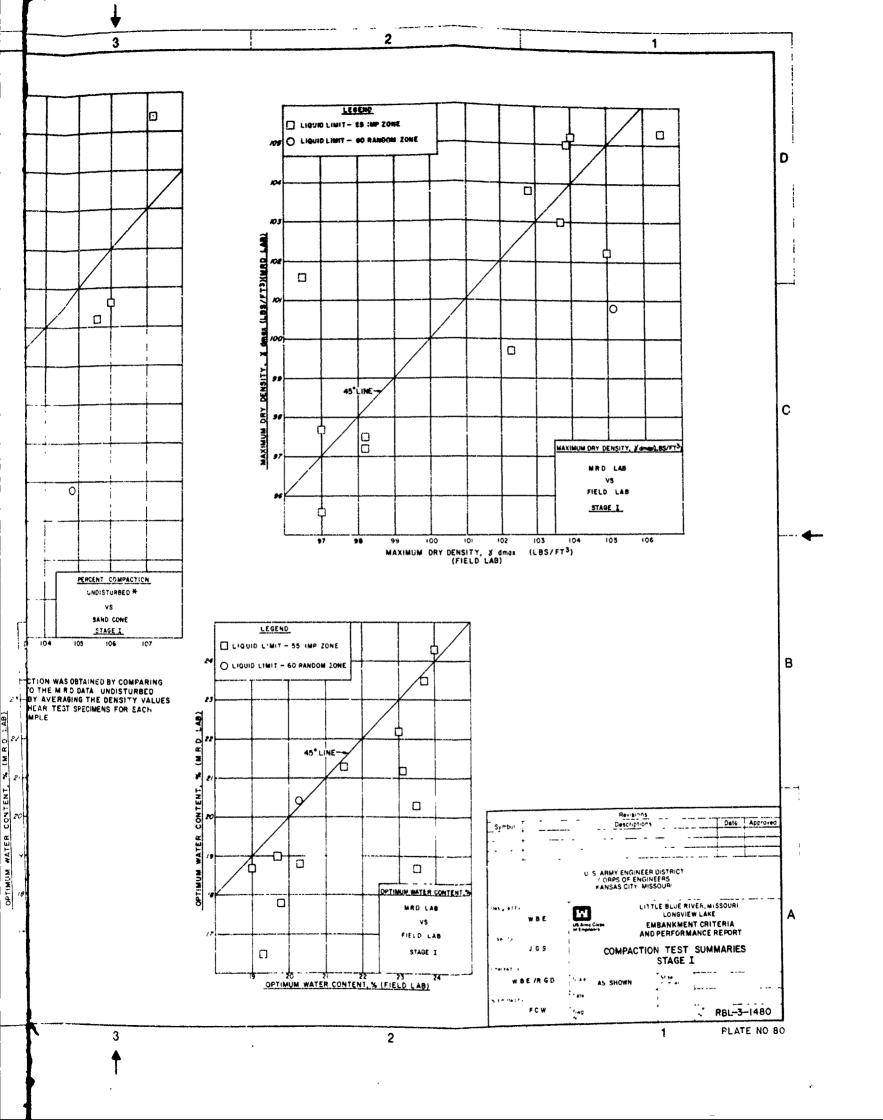
A. H. WN

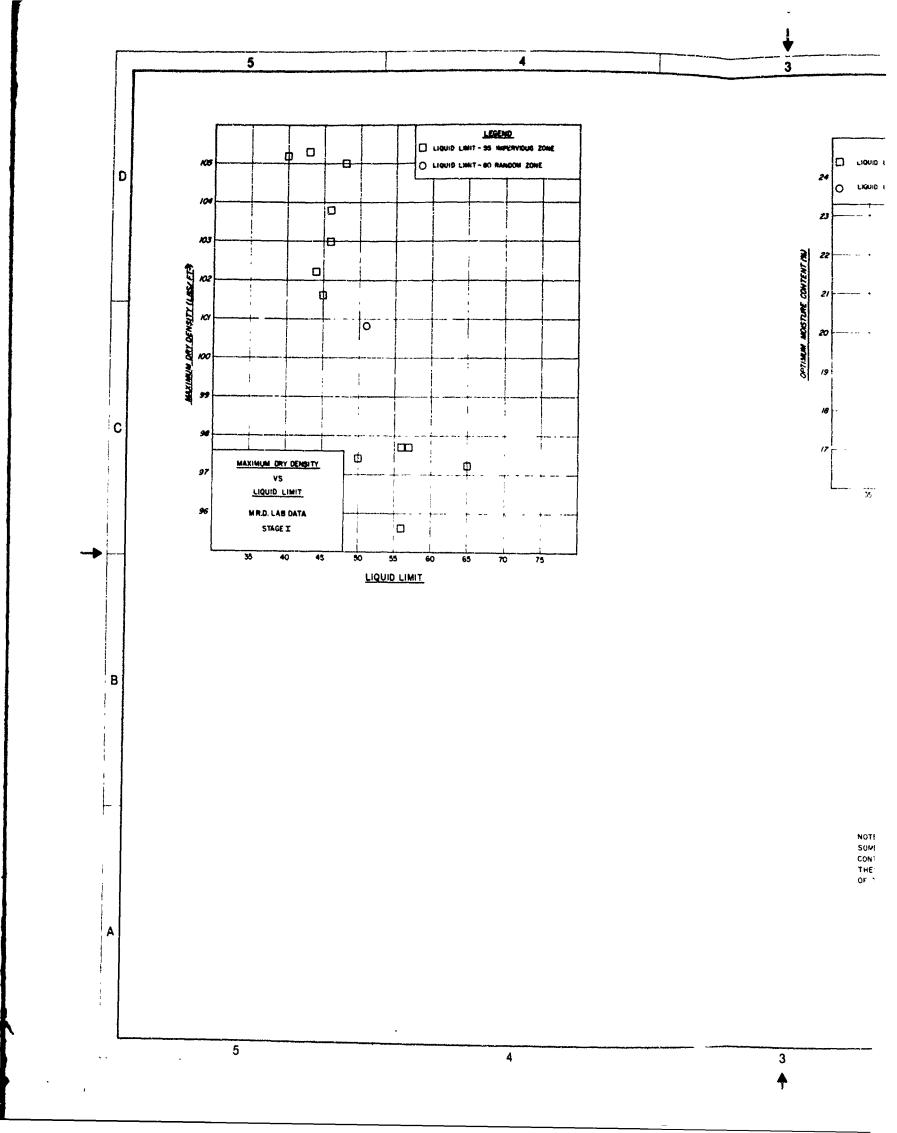
RBL-3-1478

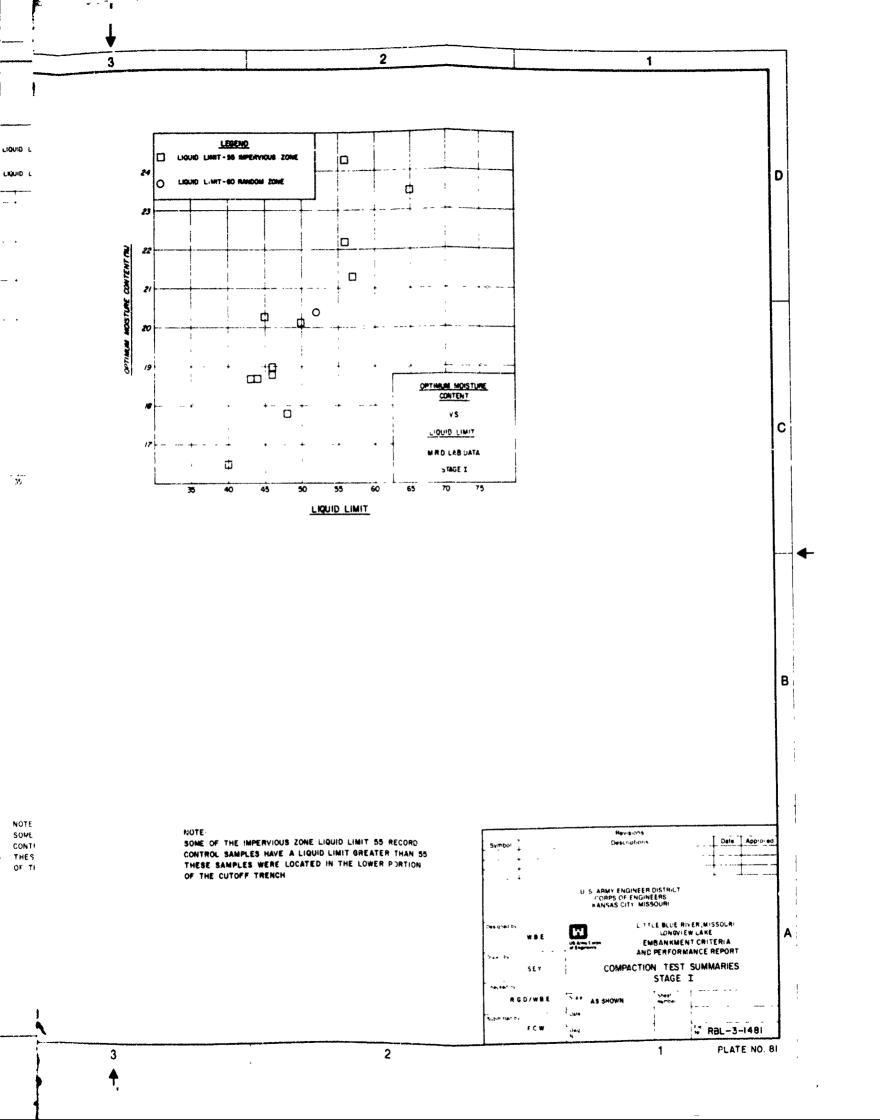
2

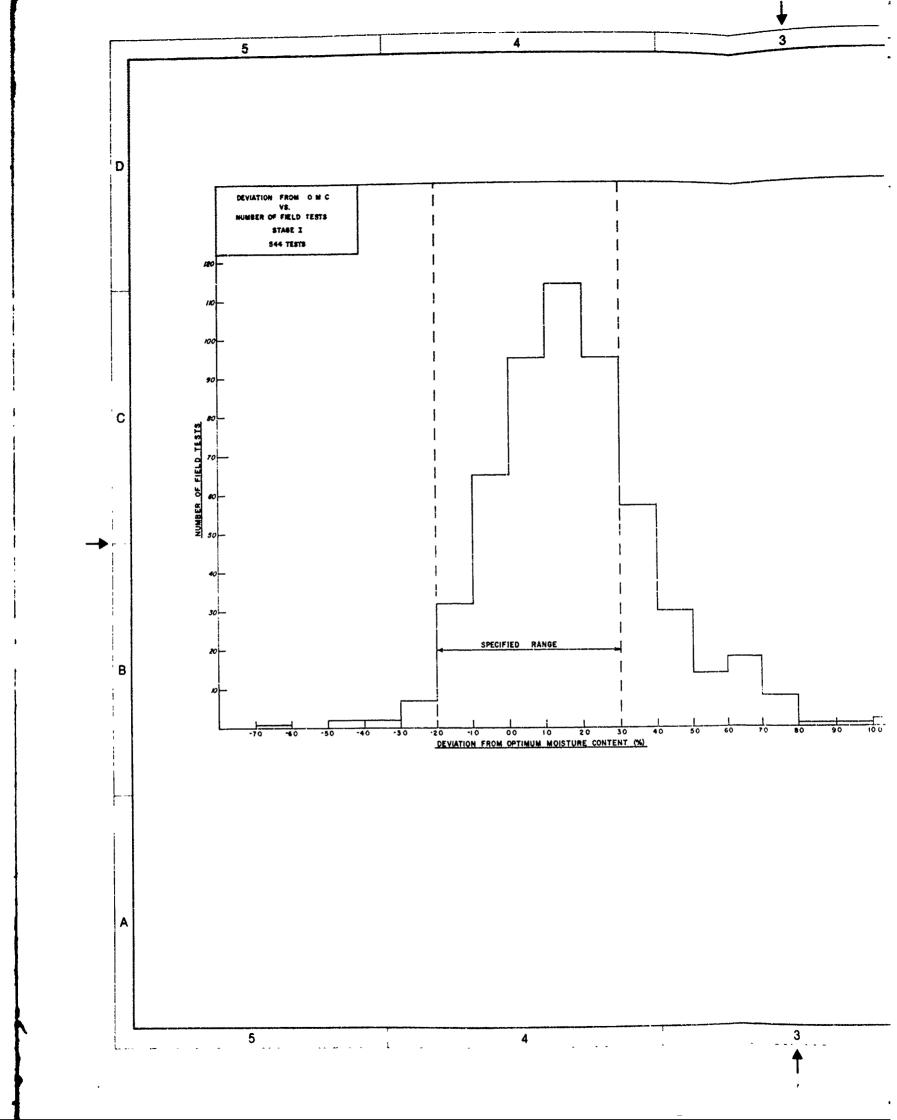

PLATE NO. 78

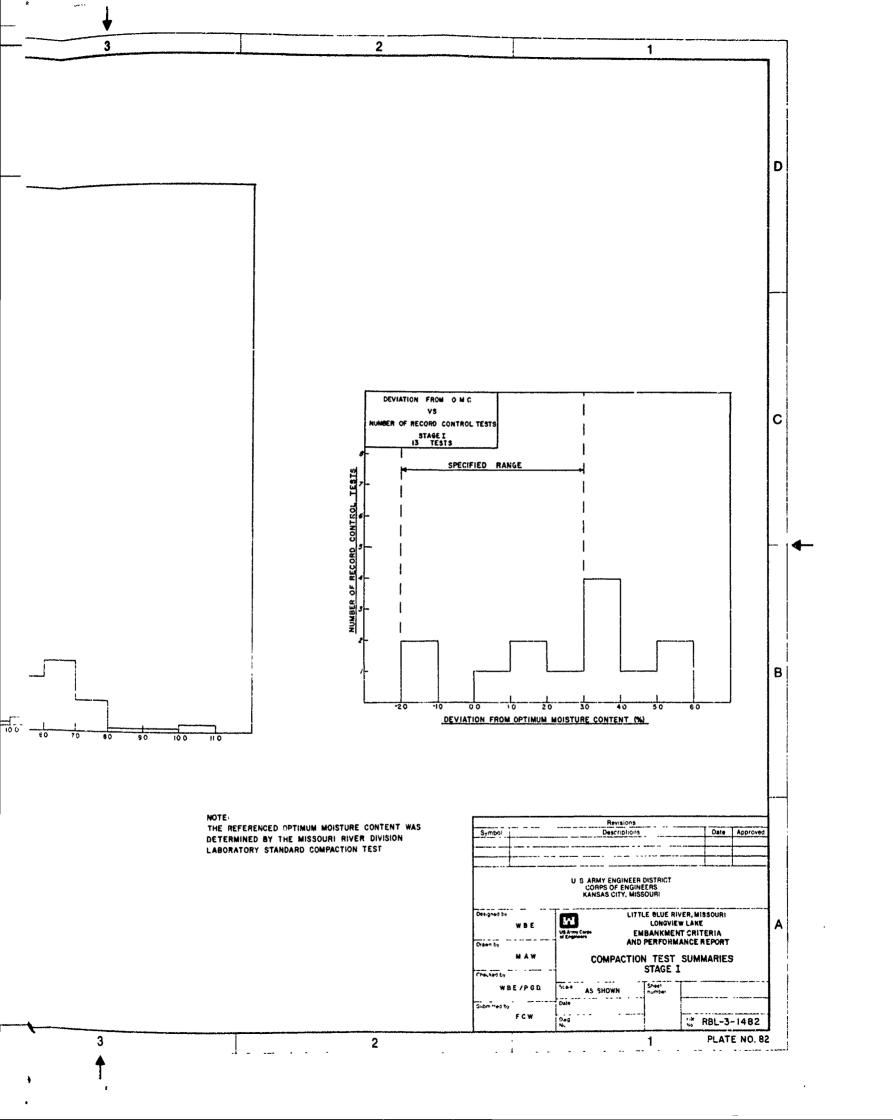

D

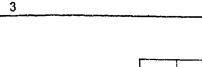

C

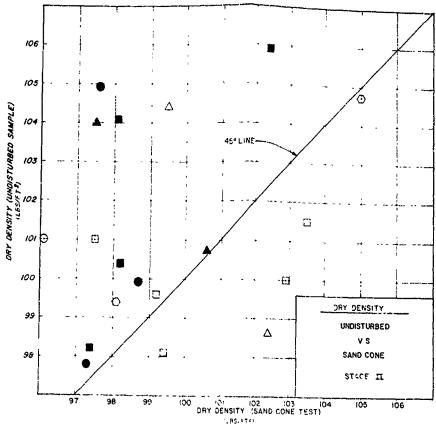

В


5 D LEGENO 107 LIQUID LINKT -55 HMP ZONE AND DE LIQUID LIMIT - 60 RANDOM ZOME 105 DRY DENSITY (UNDISTURBED SAMPLE)
(LBS/FT3) С П 45" LINE 0 DRY DENSIT undistran, * ٧٠ SAND CUNE STAGE ? 107 108 103 102 DRY DENSITY (SAND CONE TEST) В Α 5









EN TY (UNDISTURBED SAMOLE)

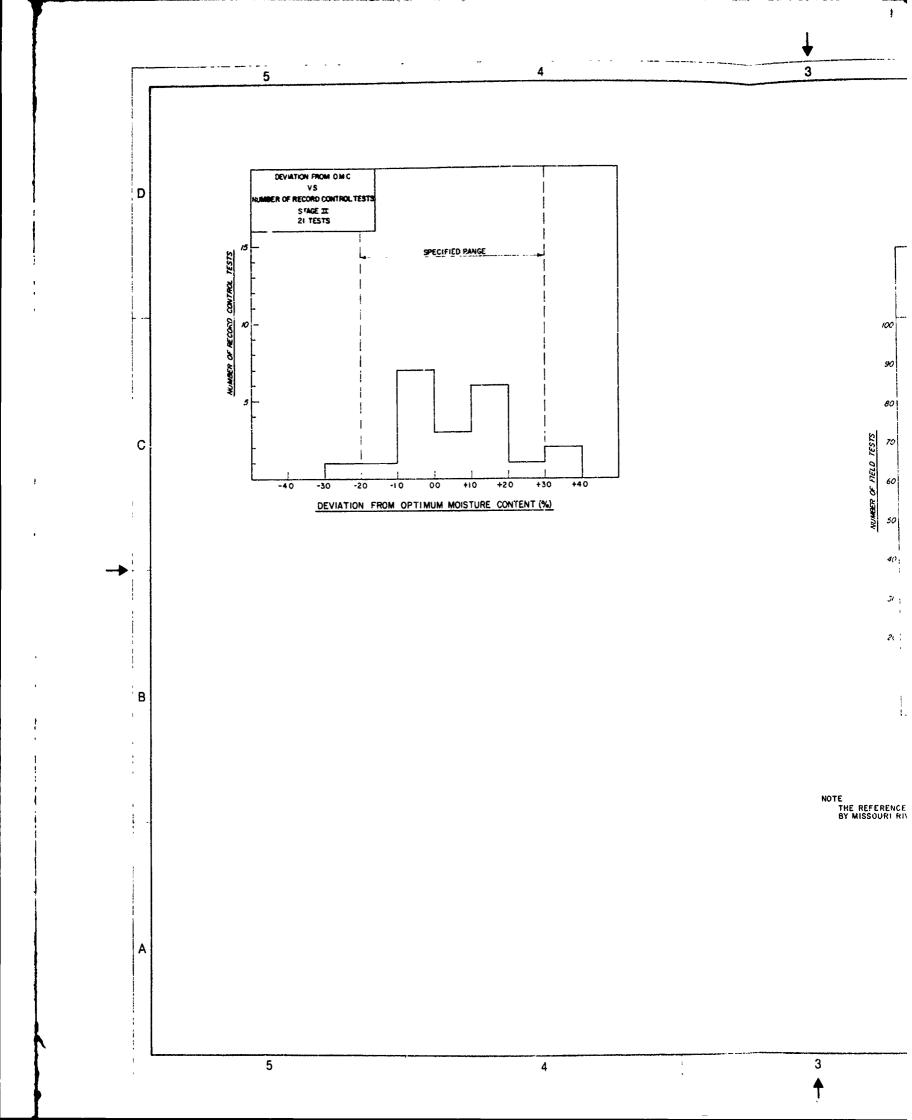
ĩ

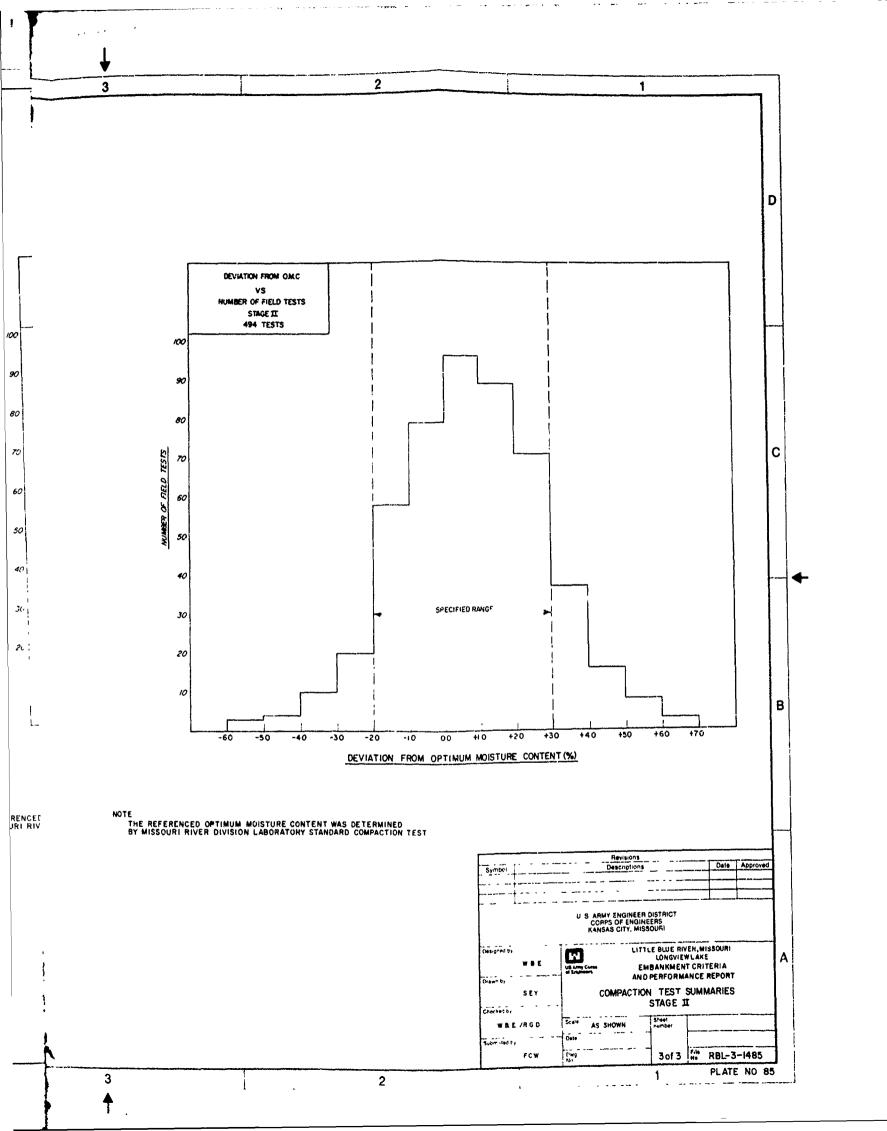
2

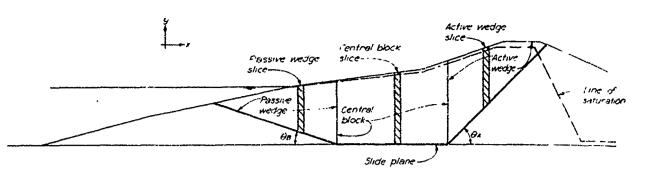
	LEGEND -	STAGE II
SYMBOL	SAMPLE	LOCATION
0	LIQUID LIMIT	- 55 IMP ZONE
0	LIQUID LIMIT	- 60 IMP ZONE
Δ	LIQUID LIMIT -	- 60 RDM ZONE
	LIQUID LIMIT	- 65 IMP ZONE
•	LIQUID LIMIT -	- 65 RDM ZONE
A	LIQUID LIMIT -	70 RDM ZONE
0	BERM ZONE	- UNSPECT LINUID LIMIT

1

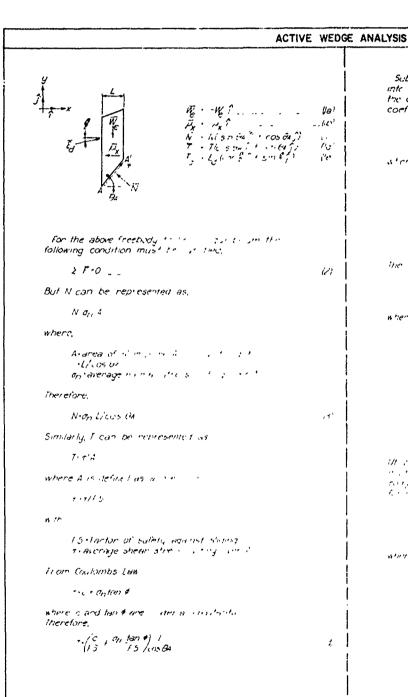
D

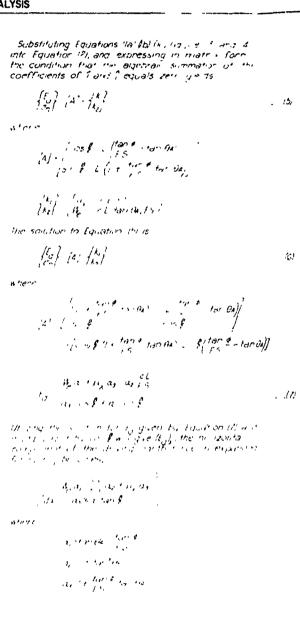

С


В


NOTE
THE UNDISTURBED DATA WAS OBTAINED BY AVERAGING MOISTURE
AND DENSITY VALUES OF ALL AVAILABLE SHEAR TEST SPEC MENS
FOR EACH RECORD CONTROL SAMPLE

	F.	BVIS UPS			
Symbol	Des	egiptions	_	Pate	Approved
	_	_	- 1		
•			- 4		
		-	- •		
	, 5 HBS C	NGINFER DISTRICT OF ENGINEERS LITY MISSOUR!			
`m\. +' . ₩8€	US Army Curpo of Engineers	LITTLE BLUE F LONGVI EMBANKME AND PERFCR	EW LAKE INT CRITE	ERIA	-
EGM	COMPA	CTION TEST	DATA SI		Y
FRI FRI Ly	1				
RGD, WBE	STATE AT SHOW	N Sheet	1		•
triest,	Dare	}		-	-
, (W	Cowa .	1	File F	RBL-3-	1483


PLATE NO 83

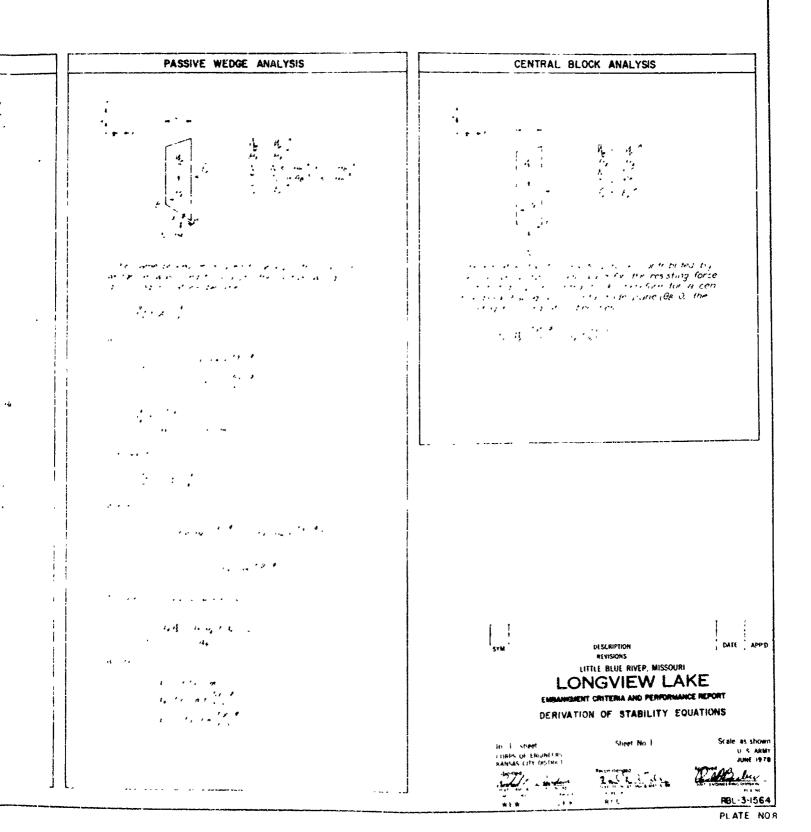


GENERALIZED CROSS-SECTION SHOWING A TYPICAL SLIDE PLANE

12.0

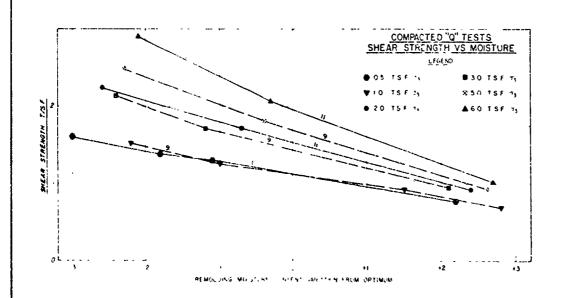
The ... wodge in govern .

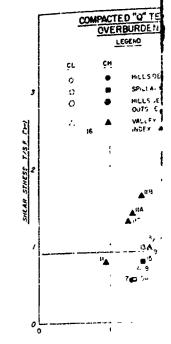
مرسره الما


;".:

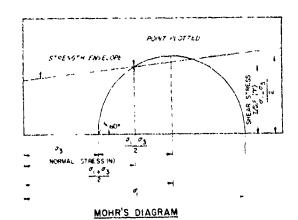
DEFINITION OF SYMBOLS USED IN DERIVATION OF STABILITY EQUATIONS ... unit vector in a direction ... unit vector in a direction ... Effective weight vector ... Effective weight vector ... All horizontal cumponents if all water forces is time, a limitation of the horizontal cumponents if all water forces is time, a living of the horizontal cumponents in all water forces is time, a living of the horizontal cumponents in a larger time. ... Normal force we for acting implemationer as since the military of the process of any military in a larger time, which is in the force of the process of the proce

ine of struction


-==


į. .

INDEX	COMPOSITE	CLA	SEIFI	CATIC	N	DRY DE	NSITY	WATER	CONTENT	N	7	С		
NUMBER	NUMBER	SYMBOL	LL	PL	PI	MUMIXAM	AT TEST	OPTIMUM	AT TES!	7 S F	TSF	TSF	TAN @	LOCATION
6 ×	6	CL	44 50	i7	27 33	955	30 !	JA 5	21.8 21.6 22.4	175 397 399	130 168 1.72	100	- 18	HILLSIGE
8A¥	6	CL.	44 50	17	*27 33	955	95 9 9 5 4	185	209 218	1 80 3 91	1 38 1 58	13	09	HILLSIDE
7	7	СН	55 52	15 6	40 36	985	94 4 93 €	235	26 J	1 32 3 32	54 56	50	02	HILLSIDE BORROW
8	8	CL	45	15 ,	30	1035	99 0 98 6 98 1	195	22 2 22 6 22 2	1 59 3 89 6 00	1 02 1 54 1.73	. 80	16	DOWNSTREAS VALLEY
9	9	CL.	43	17	26	1015	.97.4 96.9 96.7 96.7	2: 0	22 5 23 1 23 6 23 8	1 53 3 55 5 54 1 40	95 95 93 69	60	. 06	VALLEY
9&	9	CL	43	17	26	1015	977 973 967	210	20 (° 19 8 20 6	1 /2 3 99 6 04	1 25 1 71 1 80	1 00	14	VALLEY
98	9	CL .	43	17	26	10.5	967 966 969	210	18 8 18 6 19 7	1 88 4 23 6 44	1 52 2 13 2 48	. 1 10	23	VALLEY
10	10	CL	38	:8	20	1050	99 2 99 3 99 4	170	197 193 195	1 59 2 67 4 84	: 03 † 16 45	95	:3	* WALLEY
11	Ħ	СН	51	18	35	1035	98 8 98 8 98 8	19 5	21 7 21 9 22 2	94 2 53 6 58	77 92 1 01	08	C4	VALLEY
HA.	11	์ เห	* 1	6	35	७१५	(00.0 90.5 99.0	10.5	17.7 18.6 19.2	1 30 2 98 7 19	, 39 171 206	13	. 12	. VALLEY
IIB .	11	CH	Si	16	35	1035	99 3 98 6 9 3 7	19.6	16 5 16 9 17 4	1 43 3 29 7 6/	1 6' 2 24 2 89	1 3	žΙ	VALLEY
HC .	11	CH		15	35	103.5	993	19.5	183	. 24	1 22	! 4	oe	VALUEY
13	13	сн	50	.7	33	103 5	98.5 98.4 98.5	195	225 225 225	1 54 2 59 5 72	94 1 02 1 25	92	08	OUTLET WOPKS
15	15	Сн	55	16	39	105 O	93 8 92 9	200	23 0 23 4	1 44 3 47	77 81	75	03	SPILLWAY
ISA .	15	ся	55	16	39	ю2 о	82 4 82 5	200	23 5 23 2	13. 34:	54 71	75	C8	SPILLAMY



COMPACTED "Q" TESTS
OVERBURDEN LEGENO HILLSIDE BORROW SPILL WAY BORROW HILLSIDE BORFOW OUTSIDE PROPOSED APEA VALLEY SORROW INDEX NO Z.* 2 NORMAL STRESS T/SF (N)

J' TE

4614

LLS .E JTS E ILLEY DEX TA

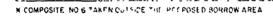
DESCRIPTION REVISIONS

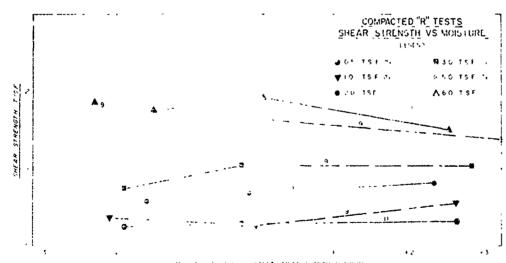
DATE APP U

LITTLE BLUE RIVER, MISSOURI LONGVIEW LAKE

PERFORMANCE REPURT
TEST DATA SUMMARY
COMPACTED EMBANKMENT MATERIAL
Q-TESTS AND ATTERBERG LIMIT TESTS

IN 1 Sheet CORPS OF ENGINEERS KANSAS CITY DISTRICT

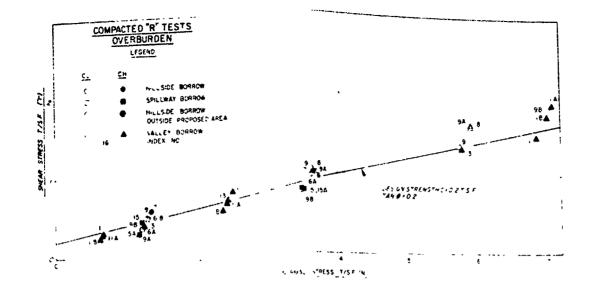

Sheet No 1


Scale as shown

Accommended -

RBL-3-1686

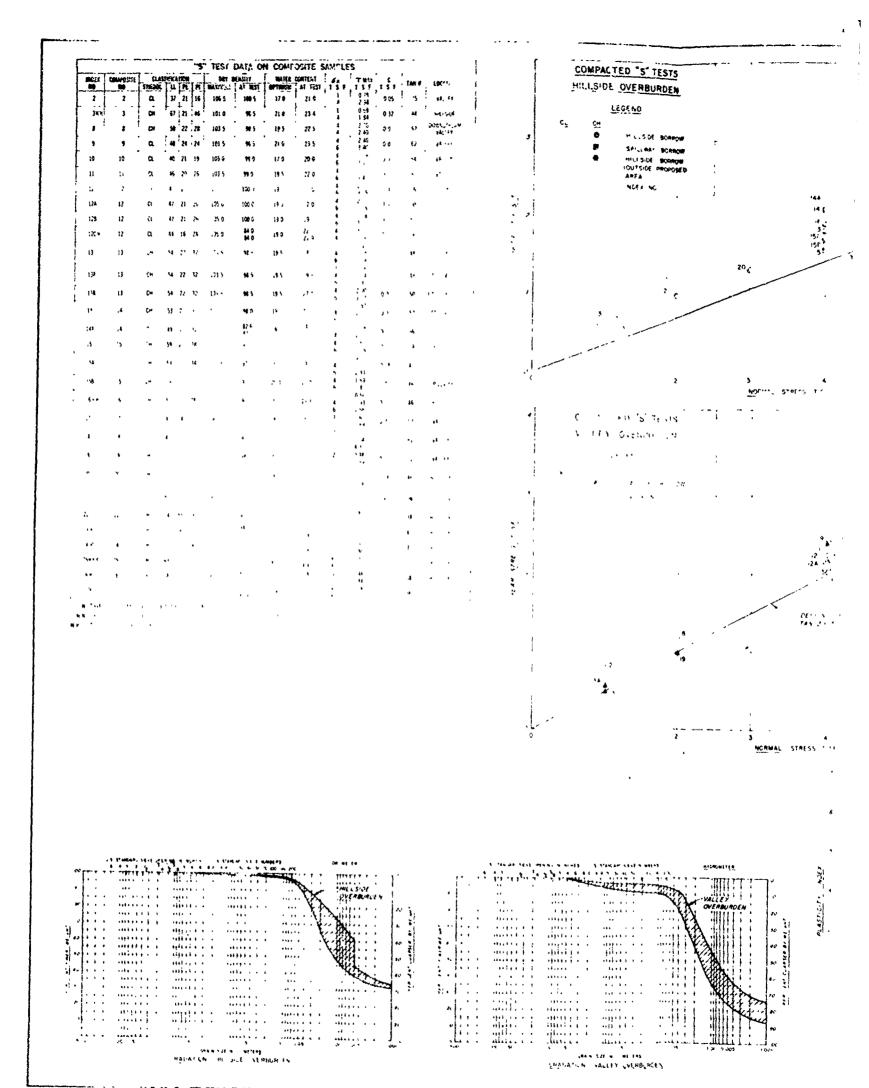
MDEX	COMPOSITE	CLAS	SIFH	CATIC)N	DRY DE	NSITY	WATER C	ONTENT	N	2	C	!	
NUMBER	NUMBER	SYMBOL	LL	PL	PI	MUMIXAM	AT TEST	OPTIMUM	AT YEST	TSF	TSF	TSF	TAN 0	LOCATION
6*	6	CL	44	17	27	955	917 907	185	210	129 358	100	25	55	HILLSIDE
6A#	•	CL	44	17	27	95.5	95.5 95.5	18.5	511 510	121 356	37 97	01	28	HILLSIDE BORROW
7	` 7	СН	55	15	40	985	93 7 93 7	255	263 262	134 359	5 6 102	30	20	HILLSIDE BORROW
6		G.	45	15	30	103 5	99 O 96 9 98 I	195	220 221 221	1 29 3 60 5 9 4	50 104 ; 163	, 20	24	DOWNSTREAD VALLEY
9	9	CL	43	17	26	1015	968 967 964	210	23 6 23 8 24.2	1 32 3 59 5 79	55 103 137	40	18	VALLEY
94	9	CL	43	17	26	101 5	981 1005 964	210	20 9 20 7 21 1	1.15 360 594	26 104 164	00	28	VALLEY
98	9	CL.	43	17	26	101 5	96 7 96 6 96 6	210	18 9 1 19 1 18 7	1 21 3 43 7 08	36 74 186	10	26	VALLEY
*		СН	51	16	35	1035	989 989 990	195	22.1 218 22.0	68 247 687	31 81 150	. 50	20	VALLEY
ЯÅ	Ħ	СН	51	16	35	1035	99 I 96 6 98 6	195	192 193 195	67 239 710	29 68	20	25	VALLEY
88	in .	СН	51	16	35	1035	98 5 98 1 97 9	195	176 179 180	64 233 702	25 57 176	· 10	24	VALLEY
13	13	СН	50	17	33	103.5	98 5 99 5 98 8	195	22 5 22 5 22 4	1 24 2 41 5 78	40 70 135	18	20	OUTLET WORKS
15	15	. сн	55	16	39	1020	931 934	200	23 2 23 4	i 22 3 46	38 80	. 19	19	SPILLWAY
I5A	. 15	CH	55	16	39	ס גרי	817 821	200	24 4 23 7	117 346	89 80	05	, 55	SPILLWAY

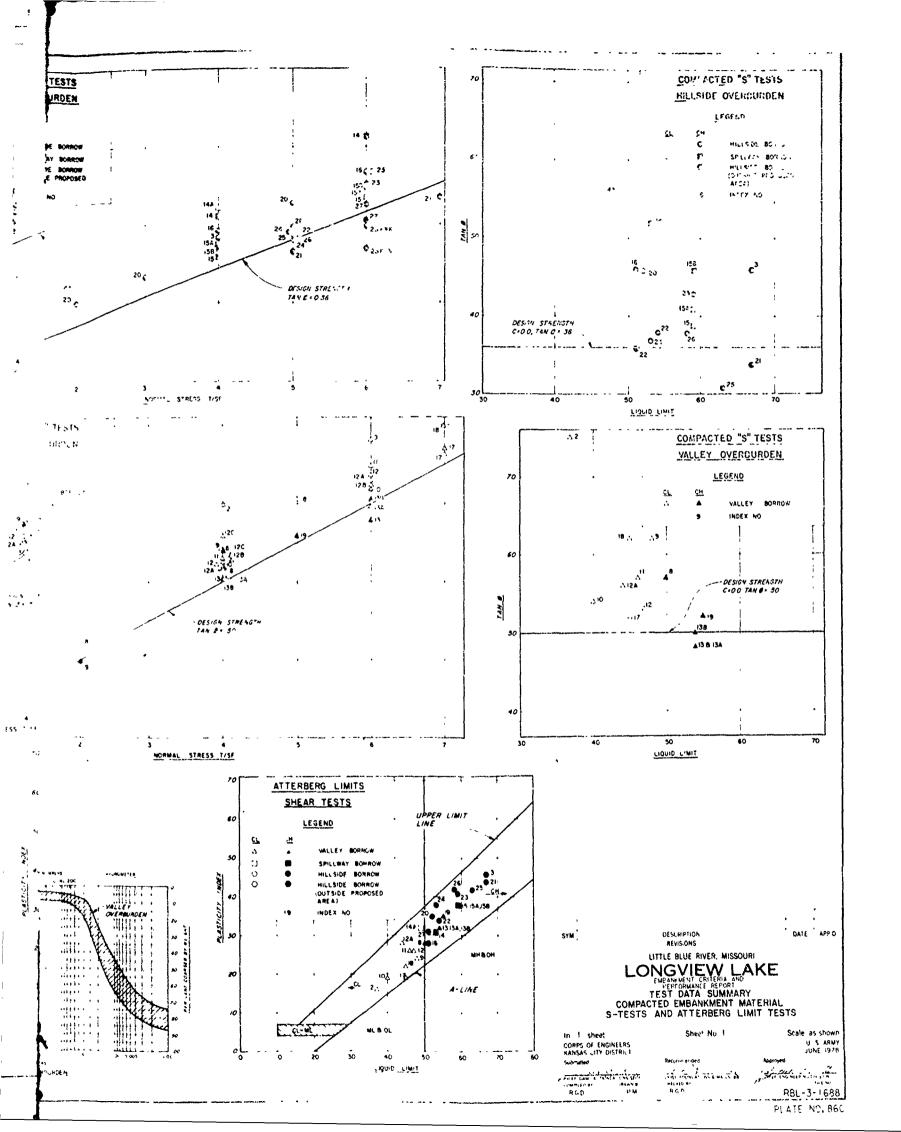

MEMORIAN MERCHANISM WAS ARREST OF THE OFFICE OF THE

SHEAR STRESS TASP (7)

co

-

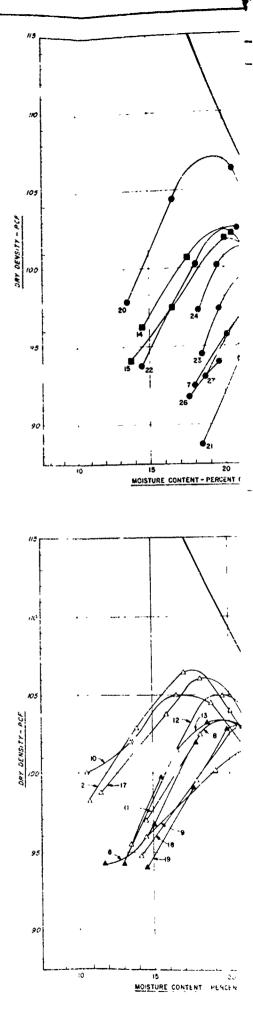

co

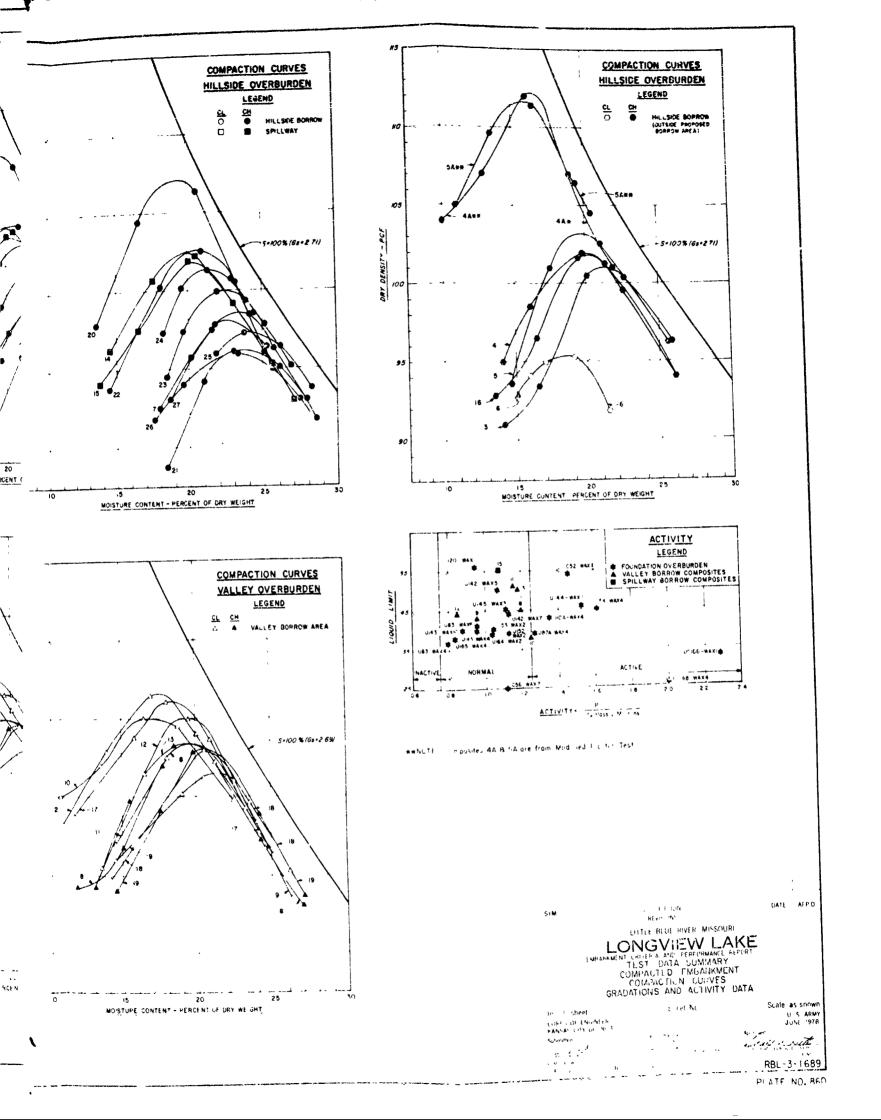

۲5

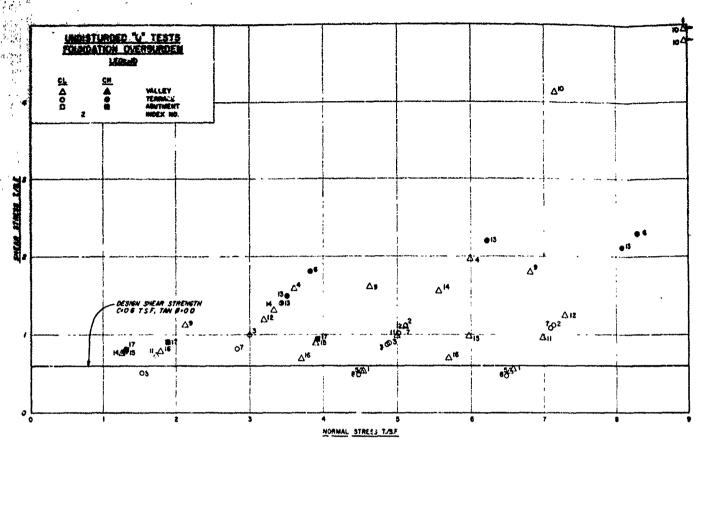
LONGVILLY LAKE

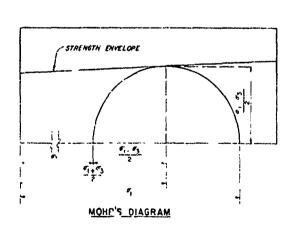
-m, + m²

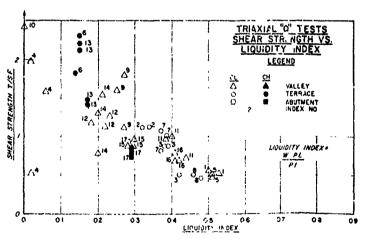
* "

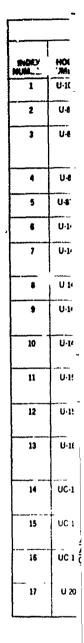





		MALE	SACE			SSECAT			MARKET	(PTMAN)	LOCATION
	COMP RUMBER	10,00000	INSECTED.	DEPTH	SYMMOL	u	7	1	PRY DEPORTY	MATER CONTENT	VALLEY
,	,	A 33	147	16386375	α	37	21	25	106 5	1/0	50RROW
		A 34	·	60110		ļ i		 			MILLSON
3	1	# 74 A 75		0578	(OH	67	71	*	191 0	no	900000
	ļ	t A78	ŧ - ¦ - ⋅	050			×	Ĩ 31 ¹	162 0	195	1111106
4	4	A 79	147	: 05080110	O+	\$5	Ľ.	L".		L	900000
-		A74	T	950	DX	35	N	31	112.9	16.0	HILLSIDF BORROW
44	1	. A79	167	05040110		ļ		4			HR SIDE
	5	A 66	}	30 12 5	91	55	71	: 34	103 5	195	BORAGW
	ļ	A 99	! !-	30125		1		<u> </u>		1	MRISIDE
SAN	5#	A 68	1 :	. 6667	CH	1 25	n	34	311.5	16.6	BORROW
	+	ABI	1 1	2062	1	1 44	١,,	27	955	18.5	HR (406
6	•	a 67	i i	25110	a	. ~	į "	1."			BORROW
,	,	A 77	1 1 "	0 15 0	DH	. 55	15		96.5	22.5	HELSIDS BORROW
		A B	1 .1 .	1 0120	į - T	+	•	1 - 1	· · · · · · · · ·	-	DOWNSTREAM
		0 40	1	6259 6178	(CH	50	. 27	; 28	103 5	19.5	BORROW
	ļ	- 0.91 0.84		8128	į	1		•	, ,,,,,	*	VALLEY
,	•	085	. 1	463	; α	1 44	24	24	101 5	21.0	BORROW
		4 62	- i	7355	· -		23	. 19	105 9	17.0	ANTIEA
10	10	A 63	1 1	050	a	ս	i.".	1.			BORROW
	11	A73	1 77 7	854	α	4	1 70	! 26	, 103 5	195	BORROW
11	1	0.86	4_ 1	4 675	į. –	4	ļ -	+	-	į	
12	12	A 57	142	10798) ,,	1 47	1 21	74	105 0	190	OUTLET WOR
	<u> </u>	AC 21	344	15 0 26 0	1	-1	•-	•		1	
12	13	AC 55	142	1025	(On	54	: n	32	103 5	i s 5	NOW TESTUD
		- 	+- ;	10114	1	1	† ••	1 3)	163 0	19.5	SPHLWAY
14	1 14	AC 53	1 1	1 670	CH CH	53	} "			1. "	
,	1 15	AC 52	1	11 5 15 0	D+	59	2:	1 32	192 0	. 200	SPRIWAT
15	1 13	AC 54	1	1000	+	. .	1			<u> </u>	HALSIDE
16	15	A 65	1 1	17167	· он	51	[23	78	102 0	20.0	BORROW
	· + ·	A 66	. !	4 4 0 E O	t -	Į.	ł	• -		+	VALET
17	17	D 1/1 0 1/2	i 1	. 80110	ļ a	43	24	\$1	106 0	1 18 0	BORROW
	-+·	0 173	·	2040	 -	1	†	•	102 5	205	VALLEY
18	1 18	D 404	سرأ با	2040	α	45	_ 23	22	102 3		BORROW
19	1 -19	0 20A	167	2356460	Î CH	55	70	35	103 0	1 10.2	YALLEY
26	. 20	2) 175	+	6080	. ~	. 57	١,,	35	197.0	19.0	MALSIDE
70	1 20	0 :84		2380		, ~			•	•	BURROW
21	71	D 176	!	2040	СН	, 67	23	- 44	96 0	23 5	BORROW
	ļ	D 17.	4 ! -	2040	•	÷ -	•	٠		+ ~ -	HALL SICE
22		0 '80 0 10.	1	4060	CH	1 54	20	34	102 5	.70 \$	BORROW
	•	0 :31A	. ;	45.0	1	+	٠,.	. 41	100 0	. 27.2	HILLSIDE
23	23	D 184	i	2546	. 01	1 59	. 18	. 41		1 "'	BOPKOW
	24	C 131A	1	. 4040	. (4	. 33	` 15	31	107.0	21.2	HALSIDE
24		D 182	. 7	8 6 10 0		, "	• "				EGRPOW
ช	25	0 22	7	12 0 21 5	O.	1 63	1 21	42	96.5	24.3	HILLSTOE BORROW
		A 135	, ?	60110	1	1	•	•	•	İ	NELCOE
n	. 8	A 21 D 178	1 2	75190 100120	: On	1 58	, 16	4?	9e 0	23 3	BORROW
	Ť	0 154	1 1	2040	1		•	•		1	1
27	: 27	0 184	2	: N 150	OH.	51	'x	٠ .	98.5	22.8	HILLSIDE
		5 176	1 2	# 0 10 C		i					1 00000


MODIFIED PROCESS 1555


NOTE COMPOSITES NO 3 4 5 6 AND 16 ARE OUTS DE THE PROPOSED BUPPON AREA



ŧ

				_4	
[104	ŀ
	HOL				
	U-10	· · · · · · · · · · · · · · · · · · ·			
	U-8				
	U-6				
	U-4				
	U-8.	•			
	U-1		• 4		
	U-1			1	
	U-1¢				
	U 10				
T	U-14				
	U-1!				
	U 1:	•		-	
	U-16				
	UC-1				
	UC 1	AXIAI "	o" Trere	7	
	ÜC 1	AR STR	TESTS ENGTH VS. INDEX		

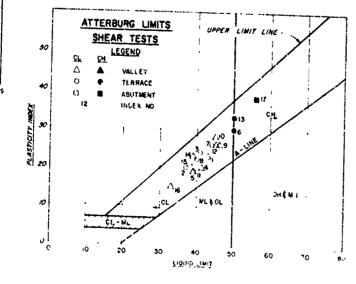
LEGEND

VALLEY SERRACE ABUTMENT INDEX NO

W-PL INDEX.

08

U 20


ATTE

12

SH

Ć,

				CLA		ATO	*	2474	L CONDITIO		7						
MOEX MANDER	HOLE NUMBER	SAMPLE MUMBER	DEPTH	SYMBOL	L. L.	P. 1	P. I.	DENSITY	WATER	% SAT.	03 T.S.F	σ _j Τ. S. F.	(01-03)	(0)+00	C		
1	U-18A	WAX 4	7.0-7.9	Q.	40	20	23	87.6 88.1	32.3	96	4	5.85	_53	T. S. F.	T. S. F.	TANO	LOCAT
2	U-83	WAX 4	7.2-7.9	α	27	17	26	98.6	23.4	90	-	7.33 6.24	.55 1.12	6.56 5.12	1.60	.63	
3	U-83	WAX 6	10011.2	α	41	17	24	\$4.4	23.7 36.4	91	8	8.27 3.98	113	7.13			TERR
								94.6 94.6 92.9	23 21 24	\$3 \$6 • 80	1	5.77 2.04	.86 .52	2.98 4.88 1.52	0.4	.10	TERR
4	U-87	WAX 3	4.0-5.0	Q.	41	21	20	81.8 80.4	22.2 21.4	58 54	2	5.74 5.18	.07 1 90	4.87 3.50	1.0	.18	VALL
5	U-67A	WAX 4	7.5-7.9	CL.	39	20	19	91.2 90.8	29.8 29.7	96	4	7.94 5.08	1.97 .54	5.97 4.54	.52	00	VALL
•	U-142	WAX 5	7.1-8.0	CH	10	20)	30	97.2 90.8	34.1 24.6	86	2	7.05 5.67 10.62	.52 1.83	3 63	.95 (Ohd)	.24	TERR
7	U-142	WAX 7	10.0-11.5	CL.	44	18	26	93 9 93.3	28 1 27.7	96 98	1	6 02 8,19	2.31 1.01 1.00	5 01	.6 (Dhar	.00	TERR
•	U-143	WAX 10	18 0-19 0	CL.	40	38	22	94.6 96.2	27 7 28 1	96	2	3 66	.83	7 00 2 83	1.1 (%)	0.0	
•	U-144	WAX 1	0.5-1.8	CL	45	20	25	95 9	26 5 26 9	100 83	6	6.96	.52 .46	4 52 6 48	.50	00	TERR
								80 9 80 0	26 6 27 1	*	1 3 5	3 22 6 21 8 40	11t 16n 180		0.8 (Oh(6) 1.8 (Oh(6)	.1 8 0.0	VALL
10	U-145	WAX 5	4059	CL	45	17	28	93 5 95.2 93 2	16 3 16 1 16 4	56 57 63	3 5	11 29 14 60 18 18	4 14 4 80	7 14 9 80	24	.28	VALL
11	U-153	WAX 2	2.0-3.6	CL.	40	20	20	89 6 80 6 91 6	20 7 28 0 27 7	90 86 91	1 4 6	2 45 6.00 7.92	72 1 00 96	12 59 1 72 5 00 6 96	.75	00	VALL
12	U-154	WAX 4	6 0-7.9	CL	45	•	26	90 8 87.7 80 1	24 7 24 9 23 7	73 73 72	1 6 2	6 24 8.56 4 36	1 12 1 28	5 12 7 28	1.2	0.0	VALL
13	U-163	WAX 3	4059	СН	50	17	33	100 7 201 3 101 2 101 5	22 7 21 9 22 1 22 6	90 96 89 92	2 4 6 2	4 83 8 43 10 28 5 00	1 18 1 41 2.21 2 14 1 50		1.7 (On(6) 1 (On)(6)	.24 00	TERRA
14	UC-164	WAX 2	2039	Cr	30	16	23	97 4 97 0 96 9	20 6 20 6 20 9	77 76 77	5 2 4	2 08 4 62 7 11	79 1 31 1 55	129 0	5 (On(3) 0 (On)3)	23 .10	VALLI
15	UC-165	WAX 4	6079	CL	35	17	21	100 6 101 0 101 1	22 8 23 4 23 4	94 97 97	1 3 5	2 75 4 77 6 93	87 88 96	1 67 3 86	85	02	VALLE
16	NC-186	WAX 3	4.0-5 7	CL	33	18	15	100 5 100 6 100 0	24 2 24 3 24 2	98 99 97	1 3 5	2 56 4 39 6 39	78 69	5 96 1 78 3 69	70	00	VALLE
17	U 201	WAX 1	1020	СН	56	18	38	96 6 96 9	26 2 26 2	97 96	5	2 11 2 74	80 87	5 69 1 30 1 87	75	.05	ABUTME

DESCRIPTION

REMISIONS

LITTLE BLUE RIVER, MISSOURI

LONG VIEW LAKE

EMPARAMENT CRITERIA AND
PERFORMANCE REPORT

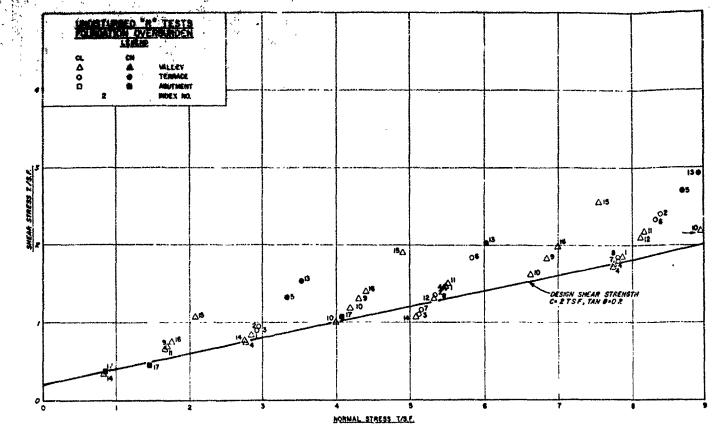
TEST DATA SUMMARY

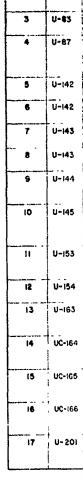
UNDISTURBED FOUNDATION OVERBURDEN

O-TESTS SYM

Q-TESTS

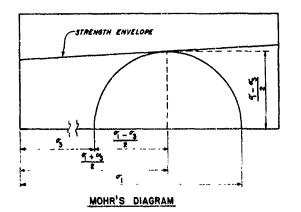
in I sheet CORPS OF ENGINEERS KANSAS CITY DISTRICT ADATIONS GET URANN BY JPM Sheet No I

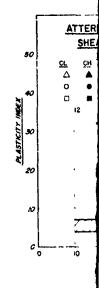

U S ARMY JUNE 1978


Recommended

CHE COLOR BUSINESS WATER BR
CHICAGO BY
R G D

RBL-3-1690


PLATE NO. 86E



HOLE NUMBER U-IOA

U-83

AIS

OR

AIR

EAR STRENGTH
TAN 8-0 2

-IOA

83

-83 -87

-142 -142 -143 -143

-145

I-I53

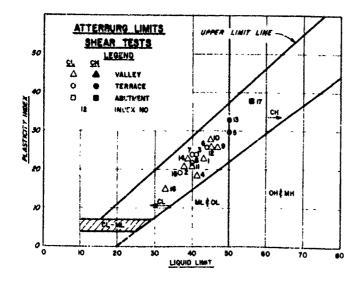
J-154 J-163

JC-164

JC-165

UC-166

U-201


ATTER

SHE

<u>CH</u> ▲

12

				<u></u>			. 1	FRIAXIAL	. R" TE	ST DA	TA						
Cardinania c	1 3			a.	0017	CATH	NH.	IMET'S	AL CON TIN		3		1		······································	T	r
MUMBER	MANAGE	MAGNUE	4	SYMBOL	L	PL.	91,	DAY	CONTENT	%. SAT.	TAF	TSE	7-44 Tar.	444	c		
	U-TOA	WX 4	7.0-1\$	CL	48	20	23	81.1 85.0 85.1	- 33.7 32.5	94 92	2	3.05 8.92	.84	2.94 °	0.25	7AN 8	MALLE
	U-83	WAX 4	72-78	a	37	17	20	96.7	32.3 23.4 23.6	90 91 92	:	9.71 6.68 10.79	1.86	7.66 5.34 8.40	.20	.26	TERRAC
3	U-83	WAX 6	100-119	α	41	17	24	94.5	23,8	92	2 2	3.00	.96	2.95	0.70	.33	TERRAC
4	U-87	WAX 3	4,0-5.9	GL.	41	21	20	95.2	26.9	97	1 2	8.25	1.12	9.12 2.77	.25	.21	WALLEY
pa A lfottona i n papana na								87.4 82.0 84.4	23 9 21.1 20.6	72 56 58	•	6.94 9.48 9.50	1.47 1.74 1.75	5.47 7.74 7.75	.29	.21	WALLE, I
\$	U-142	WAX 6	7.1-8.0	CH	50	30	30	96.3 96.6	25.0 25.0	83 90	2	4.64 11.39	1.32	3.32 8.70	.50	.27	TERRACI
•	U-142	WAX 7	6.11-0.0	۵	44	19	26	93.2	27.8 27.5	93	4	7.67 10 87	1.84	5.84 8.34	1.00	.17	TERRAC
7	U-143	WAX 4	6.0-7.9	CL	40	16	24	97.2 97.7	24.7 24.7	92 93	4	6.29	114	5.14 7.70	0.0	.24	TERRACI
	U-143	WAX 10	18.0-19.0	Cr	40	18	22	94.1 94.0	28.1	96 98	4	6.68	1.34	5.34 7.83	.25	.21	TERRAC
•	U-144	SHELBY I	0.5-1.8	CL	46	20	26	91.7 91.4 93.2	26.6 26.6 26.5	88 88	3 5	2.39 5.60 8.67	.70 1.30 1.84	1.70 4.30 6.84	.30	.20	VALLEY
10	U-145	SHELBY 3	4.0-5.9	CL	45	17	28	97.0 96.1 96.1 96.5	15.7 16.2 16.2 16.2	58 59 59 60	3 5 ?	5.37 8 25 11.37 5.01	1.18 1.62 2.18 1.00	4.18 6.62 9.18 4.00	.20	.23	VALLEY
11	U-153	SHELSY 2	2.0-3.6	CL	40	20	.20	67.1 67.2 67.5	28.2 28.7 28.3	84 85 85	4	2.33 7.03 10.34	.66 1 52 2.17	1.66 5.52 8.17	.30	.235	VALLEY
12	U-154	WAX 4	60-7.9	CL	48	19	26	90.4 90.8	27.7 27.1	83 86	4	6.63 IO.23	1.32	5.32	0.0	.26	VALLEY
13	U-163	SHELBY 3	40-5.9	CH	50	17	33	102.2 102.3 102.5	21.8 21 # 22.4	90 90 93	2	5.09 8.05	1.54 2.02 2.92	3.54 6.02 8.92	.90	52	TERRACE
14	UC-164	. WAX 2	2.0-3.9	CL	30	16	23	95.0 96.7 96.0	21 3 21.7 21.6	75 80 78	05	1.19 3.53 6.16	.34 .76	.84 2.76 5.08	.25	.17	WLLEY
15	UC-165	SHELBY 4	6.0-7.9	CL	30	17	21	101.5 101.2 101.6	23 4 23 4 23.3	96 98 98	1 3 5	3.17 6.76 10.09	1.08 1.88 2.54	2.06 4.88 7.54	.60	.38	VALLEY
16	UC-166	SHELBY 3	4.0-5.7	CL	33	10	15	99.9 100.8 101.2	24 5 24.7 24.6	98 100+ 100+	1 3 5	2.51 5.77 8.96	76 1.38 1.98	1.76 4.38 6.98	40	.24	VALLEY
17	U- 201	SAMPLE I	1.0-2.0	СН	56	18	38	94.9 95.7 93.7	28.1 28.1 27.8	100 100+ 96	0.5 ! 3	1.22 1.90 5.14	.36 45	.86 1.45 4.07	.20	22	ABUTME

DESCRIPTION REVISIONS DATE APPD

LITTLE BLUE RIVER, MISSOURI

LONGVIEW LAKE

EMBANAGE TO CRITERIA AND

TEST DATA SUMMARY

UNDISTURBED FOUNDATION OVERBURDEN

R-TESTS

IN 1 Sheet CORPS OF ENGINEERS KANSAS CITY DISTRICT

SYM

RANSAS CITY DISTRICT Subspirited As a Contract of the Contract

Sheet No 1

Scale, as shown U.S. ARMY JUNE 1978

R G D

Appropriate Entertaining Division FIE NO RBL -3-1691

DI ATE NO DE

		<u> </u>	AMM	RY UN	DIST	UR	SED	"S" TES	T DATA	OVER	BURDE	N MAT	ERIALS			
	<u> </u>		Γ	CLA	PF IC	ATIQ	*		NL CONDITIO	MS		T	T		 	, —
INDEX MUMBER	HOLE	SAMPLE NUMBER	DEPTH	SYMBOL	LL	P. L	. P. I.	DRY DENSITY	CONTENT	% SAT.	7. S. F.	MAX. T.S.F.	RESIDUAL 7.S.F.	C T. S. F.	TAN	LOCATION
1	UC-9	WAX 2	33-37	ОН	51	30	21	80 5	34	85	6	38		0.0	0.60	VALLEY
2	UC 9	WAX 4	6872	CL	50	23	27	91 5	30 5	98	6	4 03	:	0.0	0 65	. VALLEY
3	U-9A	WAX 4	7478	CL	42	21	21	915	27	. 89	6	3 76 1 02		. 00	. 0 58	VALLEY
		ļ					:	91 0	; 31.5	, 100	2	1 3: 3 81				
•	U-10A	WAX 4	, 6568 :	CL	•	24	. 22					3 60		. 00	0.65	VALLEY
5	U-108	WAX 3	4.9 5 3	Cr	. 44	24	20	890	25 0	. 77	4	2.41 2.65		0.0	0 63	VALI EY
6	U 108	WAX 5	8590	CL	41	21	20	950	33 0	95	4	2 20 2 75		00	0 ε>	VALLEY
	U 82	WAX 1	1015	CL	44	27	1	91 5	28	93	6	4 24		0.0	0 67	VALUTY
_ ,	U 82	WAX 5	8691	CL	40	27	18	37 0	1 1 26	97	6	3 84 3 74		00	963	VALUEY
	บลว	WAX 2	2631	CL	: 34	23	: 11	90 5	145	90 5	4	3 &1 2.70		. 06		
				•				1	ı		6	3 81			6.4	TEHN ACE
10	U-83	WAX 2	2831	CL	. 34	23	11	90 5	145	905	6		2 50 3 50	0 ĕ	0 40	TER, 70E
11	บผ	WAX 4	6669	CL	42	22	, 20	94 5	24 0	84	4	2 59 3 57		0.5	0.53	THRP//CE
12	បស	WAX 6	100119	CL	41	17	24	92 1 91 0	27 9 28 2	93 92	2	1 0G 2 24		n n	0.53	7EPRMOE
		•						95 7	28.2	100	. 6	3 58				
13	បស	WAX 10	18 6 18 9	CŁ	38	23	15	96 0	1 27 5 1	98	4 6	2 39 3 62		0.0	0 (4)	TERR/ JF
14	U 87	WAX 1	:013	CL	40	24	16	87 5	20 0	87 5	5	3 35 3 92		0.0	0 W	VALLEY
15	U 87	WAX 1	10.3	CI	40	24	16	87 5	20 0	87 5	6		3 40 3 60	0.0	0 %	VALLEY
16	U 87	WAX 3	4057	Cl	41	21	26	79 3	; , 21 0	52	2	1 42	307	0 0	0 '	VALLEY
					:			81 9 87 8	19 0 17 9	50 55	6	2 63 4 37				
17*	U 87	WAX 3	4059	ÇL	41	21	20	87 3 87 4	22 6 23 9	68 72	1 2 2	0 65 1 40	•	. 00	0.65	VALLEY
18	U 87	WAX 4	6166	CL	46	22	24	90 0	27 5	90	6	3 57 3 74	,	0.0	0 61	VALIET
19	U 87A	WAX 1	1216	CL	46	24	22	92 0	28 0	92	5	3 04	i	9.0	0 01	VALI FY
20	U 874	WAX I	6973	Ct.	46	24	22	85 0	31 0	85 5	. 6	3 28 3 60		0.0	0 63	VALLEY
21	U 142	WAX 3	5359	СН	61	10		97.0			!	3 93				,
21	0 142	44W 3	2223	CH	61	19	42	4/0	25 5	93	2	1 14 2 25 2 90		0 In	0 46	TEPRACE
		•	:	:							6	2 94				
22	U 142	WAX 4	6568	с н ,	57	24	33	95 5	26 0	93	4	2 29		0 22	0 49	TERRACE
23	U 142	WAX 5	8089	, сн	52	26	26	, 92 5	25 5	92 5	. 6	3 09 2 74	ı	. 00	0 49	TERRACE
24	U 142	WAX 5	8089	, СН	52	26	ж	92 5	25 5	92 5	. 6	3 18	. 2 40	00	0 46	TERRACE
				,								•	3 05		ļ	
. 25	U 142	WAX 9	. 15 4 15 9	CL	. 44	19	25	96 5	27 9	99	6	2 31 3 59		, 00 :	0 60	TFRRACE
26 27	U 143 U 143	WAX 4	6090	CI CL	40	. 16 16	, 24 24	96.2 96.2	24 6	89	6	3 36		00	0.56	TERRACE
		! ! •	. :	1	İ		•	, 98.7	24 6 24 2	89 93	; 6 !	1	3 28 3 39	00	0 54	!
28*	U 143	WAX 4	6019	CL	40	16	. 24	97 2 97 7	24 7 24 7	93 93	19	50 1 75	!	00	0 53	TERRACE
29	U 143	WAX 5	9098	Cr	42	18	24	95	27	93	2	1 34	T	0 25	0 55	TERRACE
30	U 143	WAX 9	170175	CI	43	a	22	94	28 5	97	1	67		0 23	0 55	TERRACE
	, <u>,,</u>		, •	ا							1 4	2 59 3 45	;	ı İ	i	i
31	U 143	WAX 10		CL	44 !	. <i>.::</i>	?7	865	31	87	6	3 45 1 04]	00	0 625	TERRACE
32	U 143	WAX 12	22 2 27 1	CL	!	18	31	3U c	31 5	100	6	3 25 3 62	!	00	0.57	TERRACE
۵*	U 144	WAX 1	0518	CL	46	ંજ	` 26	93.2	26.5	91	24	1 75	1	00	0 70	VALLEY

INDEX MULIBER 52 *

* NOTE

DEX 38EI	N
34	ATION
35	TIEA
36 *	#1EA
	IFFEA
37 38	. ICLEA
39	WIFA
	CITY
6 0	CIEY
1 1	St. ACE
12	1 // (5
13	K.CE
A 4	RITACE
15	WK/CF
6 ×	' (* , FY
7	, A. E.
	, A .EY
8	ALLEY
9	LALET
0	ALLEY 'J
1	ALLEY
2*	· · · · ACE
-	RRACE
101 _E	t
	PRACE
	PRACE
	RRACE
	RRACE
	DILLOR

-REACE RMATE

PRACE ERPACE 1 A 14

					WIC				L CONDITIO			-r	TERIALS	7	- 1	
NDEX	HOLE	SALIPLE NUMBER	DEPTH .	CLOS	[]	P. L	 P 1,	DRY	WATER		<i>σ</i> ₆ Τ \$. F	MAX T. S. F	RESKAIAL T. S. F.	C T. S. F.	TAH E	1004/003
ALBER 34	MUMICER U 145	WAX	1418	СН	51		30	\$3.5	26 0	*	1 5 7	0 85 2 95 3 90		00	0 57	VALLEY
35	U 145	WAX 2	3035	CL	42	21	21	98	24	*	1 4 6	, 56 275 360	,	00	0 59	AVITEA
36 °	U 145	WAX 3	4059	CL	45	1/	28	97 0 96 1 95 1 95 5	15 7 16 2 16 2 16 2	58 59 59 60	1 22 38 12	10 14 26		07	0 23	VALLEY
	, -			CL	. 20	22	17	85 2	27.6	84	6	3 62	·	00	0 60	VALLEY
37 38	U 152	WAX 2	6368	CL	46	24	22	89 3	25	78	. 5	4 84 4 01	•	00	0 67	VALLEY
39	U 153	WAX 1	1015	Cl.	42	24	18	92 5	27 5	93	1 5 7	0 68 3 35 4 43		0.0	0 65	VALLEY
40	U 154	WAJ 2	2025	Ci	41	27	19	89 5	24 5	75 5	, 5 5	2 67 2 79	•	0.0	0 55	VALLEY
41	U 154	WAX 5	858)	Cl	46	25	21	84	35	95	1 4 6	72 2 76 3 16		00	0 64	VALLEY
42	U 155	WAY 1	1518	CL	43	25	18	8 9 5	31	. 98	. 1 5 7	68 3 23 4 53	•	00	0 63	VALLEY
43	ំ ប សេ ៖	: WALZ	13438	Cſ	46	22	7 6	101 5	22 5	92 5		0 50 1 20 2 10	}	. 00	054	TERRACE
	i			ο		. 3	33	102.5	22 4	93	4 5	•		. 00	0.51	TERRACE
44 * 45	0 163	WAX 4	4059 7276	CH CH	50 54	17 19	33	161 5	22.5	93	3		13		0.40	TERRACE
46*	UC 155		6079	Ct	38	17	21	101 5 101 2	23.4 24.4 23.3	96 98 98	5 1 2 3	5 12 3 20		00	0 61	VALLEY
47	UC 16:	. WAX 7	13 1 13 4	Cı	47	27	25	61 101 6	26	96	, 1 3 5	1		00	0 57	VALLEY
48	. U 166	WAX 4	6164	CŁ	41	. 19	22	93 5	n	99		i	69 8J 15	0.0	06	3 VALIEY
49	1 OC 16	5 WA+2	2478	CL	4	1 28	16	84 5	. 29 5	. 83	•	2	65 55 86	. 00	0 06	4 VALLEY
50	UC 16	8 WAX 2	3033	CL	4	, 21	20	85 5	27	,	٠,	1 0	60 35 65	0		
51	U 200	wax i	1517	, Cit	6	4 2	41	. 88 5	. 30	. 9	v	1 3	53 155	0	0 0	ABUTME
52*	U 20	wax	1 1020	, сн	•	6 11	8 38	94 9 95 7 93 7	28 1	10	o o	5 5	0 35 0 40 1 00	į	17 0	35 LT ABUTME

4 NOTE From Pitests

DESCRIPTION REVISIONS

DATE APP D

REVISIONS

LITTLE BLUE RIVER MISSOURI

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

LONG VIEW LAKE

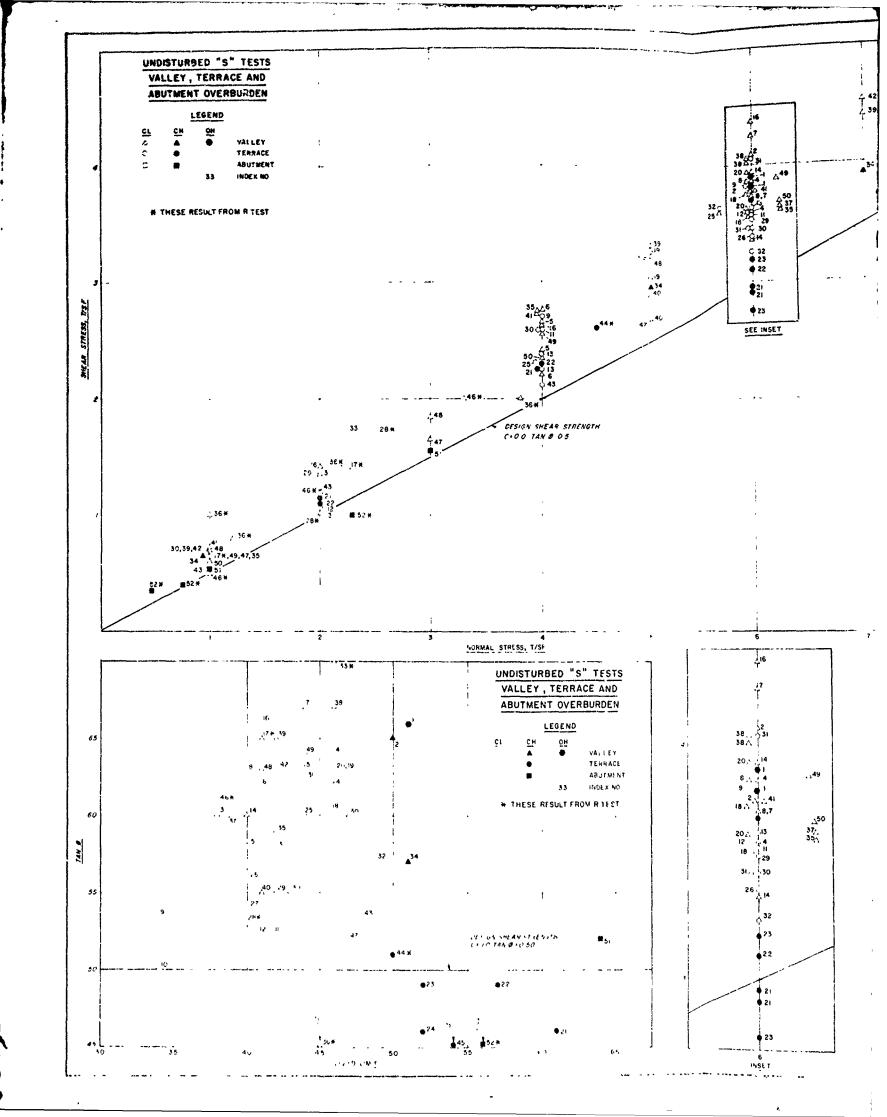
LONG VIEW LAKE

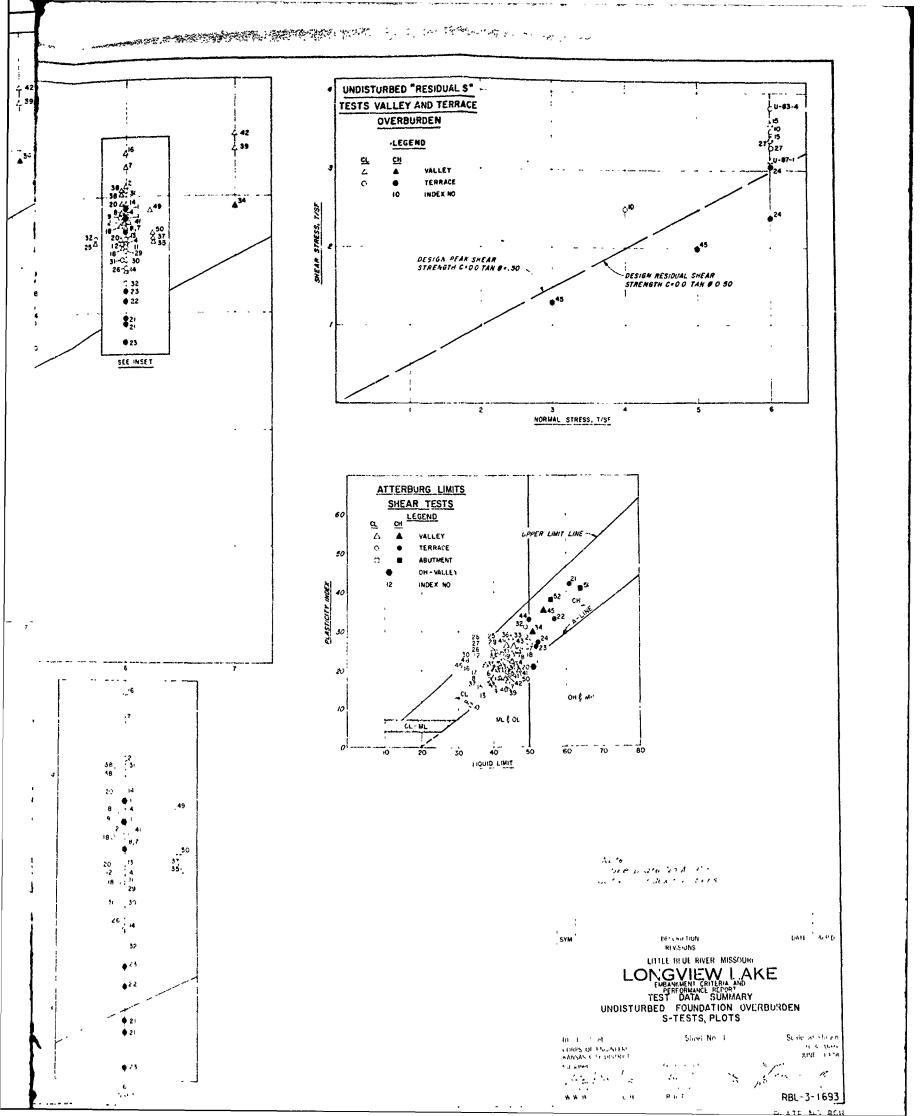
LONG VIEW LAKE

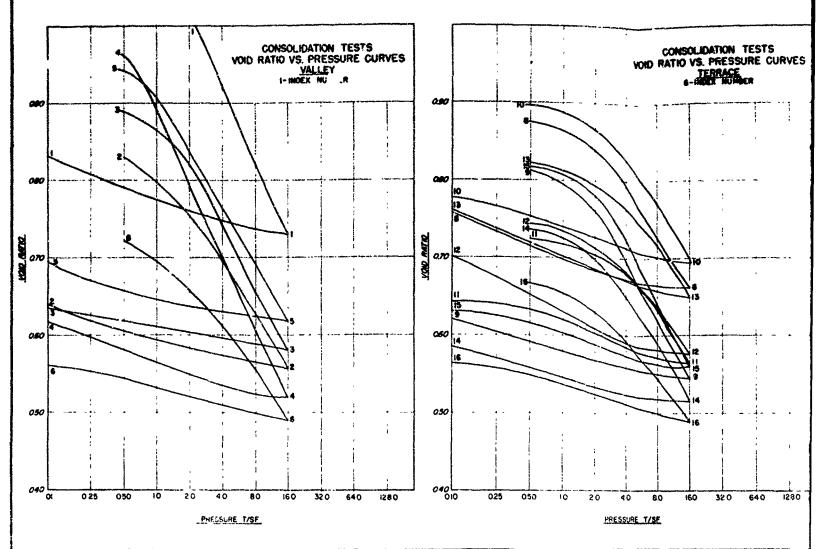
LONG VIEW LAKE

LONG VIEW LAKE

LONG VI

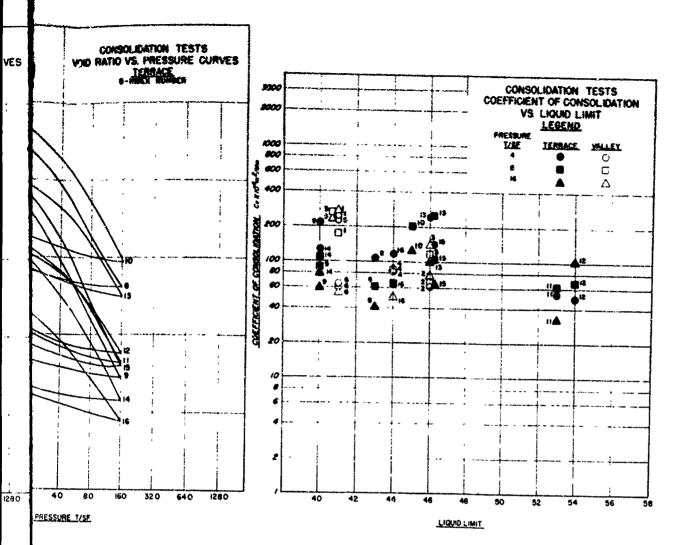

IN Sheet
COURS OF ENGINEERS
CANSA CUTY DISTRICT
SHOW OF


Shert No 1


Scarc as shown
U.S. ARMY
JUNE . 978

RBL-3-1692 PLATE NO. 860

51#



THE RESIDENCE OF THE PARTY OF T

											CMSOLIDA Y (DAM AX				100									
	,					,				•	,	•	i		;						.,			
index Karber		HOL (UNE)		٠,	441 441		۷۰;		, ,	151	151	1		*16		C		c'		4 T S F	•	\$ 1 S F		16 1 S f
. '		. 10	4	•		,	,			5.	15.44	14.	•	r '10	٠	0 (44	•	0 31	1	6 6245	,	9 91 75	:	0 1.217
2		11		•	ŧ	4	ŧ	1	44	.1		3 \$44		* 355	1	3 340	Ċ	673		9 0061		0 0065	ŀ	0 OAL
3	t	1	В		4	7.5	;		ŧ	i.		415	;	1518	ī	100		0.27	;		٠	6 633 *		1 03 10
4	t	. 4	Á						44		,	₩1		U 522	ţ	0.053	,	0.51		6 008 B	1	9467		PIXAS
5	Ų		4			٠	,	4	1			40	1	1613	•	5 358	١	2.25	•	0.023		1036		F 1 63
6	t,	. ,	,.	1	•	3.5	. 4	4	4	, 49		*4		47		1.114		,-		6 19967		Mr.		4.44

						CONSOLICA (C. MAO) II	TION 185: E
is €x S,SBER	>	SIX SIX NIVBLR	SAMPLE DEPTH	ι.	Po 1 \$ F	Pc TST]
						j	
8	Ų k)	1 6	69 - 10	43	0.38	27	•
9	ע י	. ,	125-179	40	6 71	19	i .
10	,	1	172 - 174	45	U 98	2.8	(4
12		1	63 - 65	53	0 39	5.9	0.44
15			78 90	54	0.48	5.7	2.12
3	:		151 154	46	0 92	1 45	1.46
14			92 - 94	40	0.46	2.7	1 04
5	, t		190 191	46	1 19	2.7	1 (24)
16		·	23 32	44	019	76	1 55

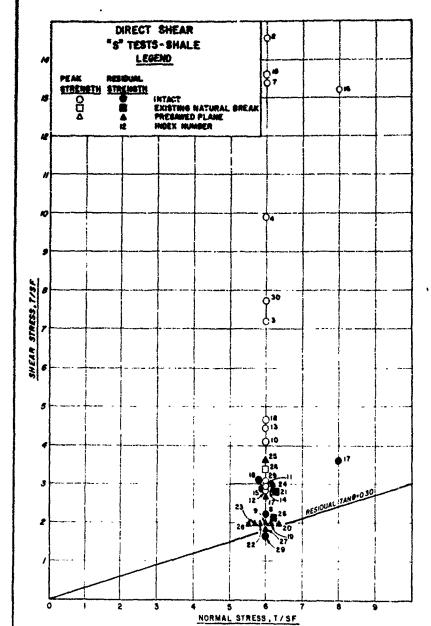
The second secon

						CONSOLIDAT CI (DAM 1)			50'				
i it P	MAX NOME'S	SAW . GE			170	151	*0	*16	c,	 c _c	4756	CV cm ² /mat	16 1 3 7
•		. 60.	. 12	43	0.36	. ,,	6 84 7	8 660	: CN2	527	0.0107	9 9061	6.0342
1	,	12.5	179	40	ខា	13	C 878	0 544	0 034	0.75	0 0213	0 0009	פמגי נו
1	•	; 2	1 :	44	. 18	2 €	0.45	0 694	0.036	0.24	, ~•	0 0204	0.0124
4	•	43	65	53	1 19	5.9	0.745	0.565	€ 334	0.27	6 0054	3 0067	9 0032
4.		1	4.6	54	0.48	5.	0.64	2.576	. 4 040	621	6 3089	3 3360	0.9102
•	2	٠,	44	44	0 92	45	0 845	5 840	3.051	924	0.2245	0.0245	0 0 1 102
-1	•	4	11	E)	956	27	0.749	8 573	9 933	. 0%	3 3729	0110	0.0030
•	i	•	19	. 46	119	22	2 841	0.460	0 (1)	23,	0.0140	• 0102	0.004
_	. ≀				619	26	542"	2 493	6 (3)	Q 17	9 21:1	136	C (3.43

IN 185 - D

DESCRIPTION REVISIONS

LITTLE BLUE RIVER MISSOURI


LITTLE BLUE RIVER MISSOURI
LONGVIEW AKE
MARKEN CRITERIA AND
TEST DATA SUMMATY
FOUNDATION OVERBUTE
CONSOLIDATION TESTS

ti I heet de

ter No. 1

RBL- 169-1

ATE NO. SE

more minimum of the second second second second second second second second second second second second second

							one	CT SMEAR "S - T	ESTS		
:49ER	IMALE	BKX	MOPLE		TIAL CONSITI	69		1	EST MESON.	-	
onsk t	MAKE	MARKER	BEFTR	DRY C.MOTTY	WORTEN'	& TREATMON	NORMAL STRESSIT	NAT AND AND AND AND AND AND AND AND AND AND	PEAR TAN 0	RESIDENT SIE AR STRESS (SF)	RESIDE TAB
4	8C-35	1	22 6-23 (122		?7	•		367*		
3	9C-11	1 1	226-251	122	!			1 1	167	1	1
\$	5C-15	3	461-916	144		*		122	12	1	ł
•	0C-15	1	69 1-51 6	140	•	*	•	3 35	1 66		1
i	9C-12	,	₩ 5-40 E	142	i		l .	1 1	16r *	1	1
í	BC-38		80 H-16 A	142	i	*	:	1	16. *		•
				1 '''	l	*	•	1		1	ĺ
1	4C-16	13	33 7-35 S	136 2	1/2	,		1346	223	}	,
•	4C-46	15	R7-135	1325	£2		6	14 56	2 42	271	1
٠	AC-46	13	31.7-325	136.4	55	R				7 00	
16	C-52**		24 6-24 6	1163		}	١.			1	1
13	5-16.44	,	245-269	1190	150	*	•	416	66 45	!	1
12	C-87	i i	56.2-44	178 6	3 t 4	7		2%		1	1
•				""	" '	, *	•		_	j	}
U	C-56	,	117-235	129 9	111] n	•	44	74		j
14	C-41	,	#6-95	136.0	52			Ì		2 🗱	1
15	C-41	2	#6-95	161 1	61		6	13.6	2 27	? 93	1
16	C-61	2	30 C-38 S	142 6	58	l K	1	13 2	1 65	2 63	,
17	C-6i	,	45.4-47.9	121	67	61	•			2.79	
10	C-61A	z	33 4-34 7	141 6	36	#1	,	4 64	70	3 12	į
19	UC-164	,	193-196	132 0	95	· ·		1	[20	i
20	UC-164	•	193-196	132 0	95	- 12			1	21	
51	BC- 184	10	70 5	154	95	sar]	2 8⊌	
22	UC-164	10	20 / -21 0	134 5	75	99		1	1	2.1	t
23	AC-181	10	20 7 - 21 C	134.5	75	*	•	}]	20	1
24	BC-165	1	1/1-195	1199	128	u			1	1.	
25	UC-163	1 1	17 7-19 5	151 7	26	<u>u</u>	6	ì	1	· 67	
26	nc -19i	,	208 27.4	,502	26	47	•	3 42	33	2.3	!
27	OC 167	1	14.8	13/ û		10			1	٠,	i
?\$	DC 167	1	15 0	137.0	1	*	j •	ļ	i	20	1
21	UC-158	, :	16.9	123	1	55		30'	5,1	. .	!
30	UC-168	4	19 C 20 8	1764	45	"		177	129	1 '	

The second second second

THE TOS ANGAS COLLEGE THEM MALHER IS THE BETSE

						_			
I	RESIDUA TAB Ø	-	***	THEM S	TESTS			.	
	ж	TOR			TEST BESULT			TIPE OF	96013BC
	žĘ T	S-TWESTON	STREMET	STREET, ST	PEAK TAN B	ME PROPERTY OF THE PERTY OF THE	MERCHAL TAN B	SMEAT SWITT ACE	MERKA
	_	27	•		16/4			MITACT	PLEASANTER SHALE
		2		1	197	1	[MIACI	PLEASANTON SHALE
	1) ×	5	12	12	1		MIACT	PLEASANTON MALE
		*	•	116	146	j		MTACT	PLEASANTON SMALE AND SANOSTONE
	} };	94		l	161		1	MIACT	PLEASANTON SHALE
	, "	94	•	i	167 *	1		MINCI	PLEASANTON SHOULE
		, ,		13 49	2 23	l	[MTACT	F.Eduarion Small
	1	n 1		14 56	242	7 2:	y.	MIACT	PLEASANTER SHALE
		6	•			2 04	.a	PREMIER	*.E4500700 ic4.E
	1	, n		416				MTACT	SEA SMALE
		n		2%	**	1		HTACT	BEA SMALE
		[*]	•	285	#	[HTAGT	STAMA CALESDURG 38
		n	•	144	ж			MIACT	PLEASANTER SMALE
		u	6			288	44	FFESAMER	PLEASANTES SPALE
		#	6	13 6	127	7 93	45	TRAFF	FEELMISS SHALE
	ì	#4		13.2	165	153	45	:ATeCT	F. COSARTER SAME
		65.6	6	ļ		2 79	47	FRE SAWER	PERSON THE SHALE
	i 1	441	6	150	74	3 1/2	ស	PRIACT	PLEASABTOD CHA'E
	;	92 !	6			20	33	PRESAMED	PLEASABTED SHALE
	(172	6			21	35	PHESABED	PLEASABION SHALE
	1	180	6			2 80	*	ERISTING BREAK	P: EASANTON SURIE
	1	77	\$			2 !	35	PRE SAME	* : A SARTOR SARTE
	1	22	•			20	33	PRESARER	Fitacation Smale
	1	43	6			î k	45	PRESARER	PLEASABTOR BILISTONE
	i	50	6			>62	50	######################################	PLEASARTON SILTSTORE
	1	45	6	347	۶,	213	я	ERIS' NG BREAK	FLEASAR FOR L LTSTORT
	1	93	6			13	36	PRESAMFO	PLEASANTON SILTSTONE
•	1	\$ 2	f			21	n	PRESAREO	FLEASANTON SILTSTON
		99	ŧ	30	ধ	1.	28	INTACT	PLEASANTOR SHACE
		30	,	7	129			TOATE	PLEASARION SHALL
		L1	i				į		

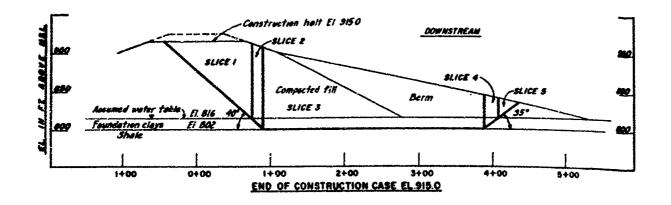
-- ---

27 07 10 12

DESCRIPTION REVISIONS

LITTLE RIVER MISSOURI
LONGVIEW LAKE
EMBARMENT CRITERIA AND
PERFORMANCE REPORT
TEST DATA SUMMARY
FOUNDATION SHALES

In 1 sheet CORPS OF ENGINEERS FANSAS OF DISTRICT


CY**Y**

Sheet No I

Scale as striwn to 5 Autor think 14.76 Bath. i.


RBL-3-1695

PLATE NO. 86J

THE PARTY OF THE P

				EN	D OF CO	NST	RUCT	ION CASE EL.	915.0			
SLICE	"O" STI		L (FT)	WEFF (KIPS)	WTOTAL	TANA	A,	FORCE DO	.0	1.34	1.50	2.0
1	1.80	0	118	682.1	682.1	09	0	Driving	1959	281.3	3082	364.3
\$	1.20	0	15	1622	167.7	.09	0	Driving	98.1	1054	107.6	112.4
3	120	0	300	2187.2	2408.1	0	0	Resisting	360.0	2687	2400	1803
4	1.20	0	18	52/	65.7	0	0	Resisting	736	65.4	62.8	57.5
8	.90	0	28	38.5	385	0	0	Resisting	64.5	55.0	52.0	45.7

						PAF	TIAL P	OOL CAS	E EL.	78			
CO III.E	"S" STRE		CIKIPS)	ENGTH TAN 0	L (FT)	W _{EFF} (KIPS)	W _{TUTAL}	TAN 1/2	ΛН	EARTH FORCES(KIPS)	10	153	50
ł	0	36	T		56	607	607	09	0	Driving	217	293	331
2			20	28	225	1016	1016	09	0	Driving	38.3	50.9	570
3			20	28	72	4318	5738	09	Ó	Dilvino	1690	2201	2456
4			20	28	102	6200	1002 3	0	0	Resisting	1940	1268	970
5			20	.28	68	1977	5294	0	0	Resisting	982	642	191
. 6			.10	25	202	4755	9510	0	0	Resisting	1392	910	69.6
7	0	30			117	739	1478	0	0	Resisting	222	145	711

STATIC

EARTHQUAKE

SUMMARY - PARTIAL POOL CASE
TYPE OF ANALYSIS HAND ANALYSIS FS COMPUTER FS

REQUIRED FS

100

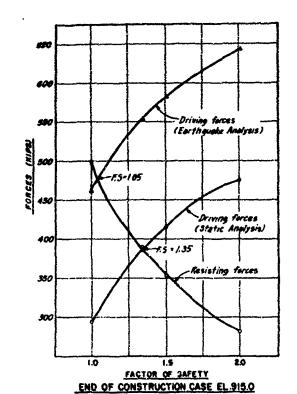
153

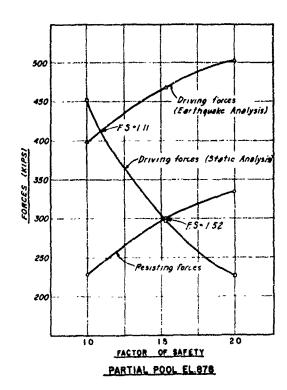
PARTIAL POOL	CASE E	878	
FACTOR OF SAFETY	10	153	20
# RESISTING FORCES (KIPS)	-4535	.2969	226 R
DRIVING FORCES STATIC ANALYSIS (KIPS)	2290	3009	3357
BORIVING FORCES	3977	1696	504 i

Driving	forces	(Earthquake Analysis)	-	
			forces (state	analysis)
		t A Device	farces	•

Where Driving Forces - 42 W7 - 005 \ 33/45 K

	300		/
			o D <u>OF</u>
	500		
	450		
(SdI)	400		
FORCES (KIPS)	350		
60	300		
	250		/
		I	


. The way the the think the training of


550

500

400

350

SUMMA	ARY- END OF CON	STRUCTION CA	E
TYPE OF ANALYSIS	HAND ANALYSIS ES.	COMPUTER ES.	REQUIRED ES.
STATIC	1.35	1.54	1.30
EARTHMAKE	1.05		1.00

END OF CONSTR	UCTION C	ASE EL	915.0	
FACTOR OF SAFETY	1.0	134	1.5	2.0
Z RESISTING FORCES (KIPS)	430.1	389.1	354.8	283.2
STATE MALLYSIS (SUPE)	2940	3860	415.8	476.7
REPRINCIPLE MALYSIS (KIPS)	4621	554.1	583.9	6118

& Driving forces (Earthquake Analysis)=

E Driving forces (static analysis)
† A Driving forces

Where 1 Driving forces - 42 WF = 0.05 × 3362 / = 168.1 (Kips)

	PHI	SICAL	SOIL								
	UNIT	WEIGHT	DESIGN SHEAR STRENGTHS								
MATERIAL		C F.	•	>		T	5	3			
	SAT.	ORAMED	CIKIPS	TAN O	C(KIPS)	TAN O	C (KIPS)	TAN O			
BERM	1/5	110	90	00	20	20	00	.30			
COMPACTED FILL	125	115	1.80	00	40	.20	00	36			
FOUNDATION CLAY	115	110	1.20	0.0	.40	.20	0.0	.50			
SHALE - PEAK	140	140			-		0.0	0.6			

SYM

DESCRIPTION

DATE APP D

LITTLE BLUE RIVER, MISSOURI LONGVIEW LAKE EMBANKMENT CRITERIA AND PERFORMANCE REPORT

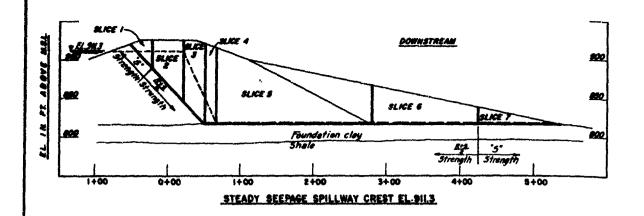
TYPICAL STABILITY ANALYSIS END OF CONSTRUCTION AND PARTIAL POOL CASE

Sheet No 1

CORPS OF ENGINEERS
KANSAS CITY DISTRICT
Submitted

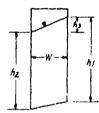
RGD

MINISTER OF A DESTRUCTION OF A DESTRUCTI

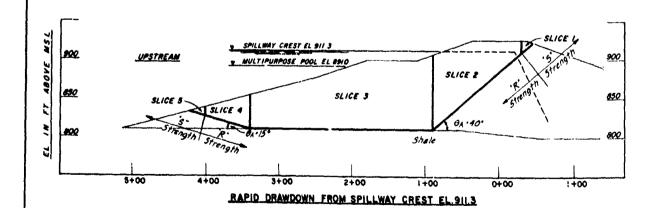

ND OF

200

850


800

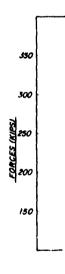
-00



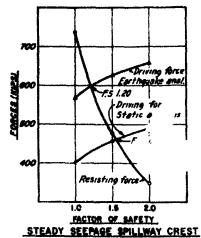
BLICE	*8*571	THOME	-Bit 9	TRENGTH	L(FT)	WEFF	WTOTAL	TAN 4/2	۱.	F.8	١	١ . ـ	
	C (KIPS)	TAN \$	C (KIPS)	TAN .	L (+ L /	(KIPS)	(KIPS)	1807 -7E	MA	FORCES (KIPS)	1.0	1.5	2.0
ı	0	36			300	54.6	69.4	.09	0	Driving	24.7	3/7	357
ž			.20	.28	425	1779	286 4	.09	0	Driving	826	105.9	1187
3			.20	28	30.0	2368	3294	.09	185.3	Driving	2912	32/0	335.9
4			20	28	17	1822	2016	0	38./	Resisting	/63	-1.8	-10.9
•			20	.25	212	1728.1	1748.1	0	0	Resisting	5263	350.8	263!
6			.10	25	72	5658	57/2	0	0	Resisting	1559	1039	779
7	0	.30	7	1	107	131.7	1398	0	0	Resisting	39.5	26.3	19.8

Sample calculation for Mh (Seepage Force)

An - Yw A,
Where Yw = unit wt of water
A = (w) (h₁ + h₂)
1 = hydraulic gradient
1 = h3/w

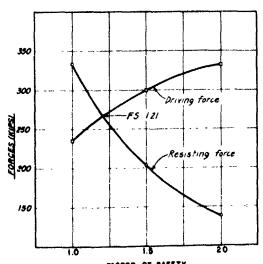


			RAPID	DRAW	NWOC	FROM	SPILL	WAY C	REST EL 9113				
SLICE	C (KIPS) TAN .	C (KIPS)	RENGTH TAN \$	L(FT)		1	TAN(42)		EARTH FS	10	121	150	20
!	0 50	l		15	143	81	09	0	Drivino	34	11	5.5	67
	<u></u>	40	20	119	4589	81	09	293	Driving	23/3	2623	2920	3244
	1 1	10	20	250	11648	0	0	884	Resisting	2446	1868	-/336	-78/
4.	L - L	10	20	62	1087	.27	0	0	Resisting	821	725	-639	-550
•	0 50			22	81	27	0	0	Resisting	72	62	54	45


SUMMARY-F

ST

RAPID DF FACTOR (RESISTIN B DRIVING


RAPID [

000	,	Earthque 1.20 - Driving Static	ing force size anal.	
400			O	

TYPE OF ANALYSIS MAND ANAL.FS. COMPUTER ES. REQUIRED F	SUMMARY-RAPID DR	AWDOWN FRO	M SPILLW	AY CREST
STATIC 1.21 1.21 1.20	TYPE OF AMALYSIS	MANO ANAL.FS.	COMPUTER ES.	REQUIRED FS
	STATIC	1.21	121	120

RAPID DRAWDOWN FR	OM SPIL	LWAY	CREST E	L.911.3
FACTOR OF SAFETY	10	1 21	1.50	2.0
E RESISTING FORCES	-333 9	-265.5	-2029	- 1376
B DRIVING FORCES	2347	2667	297.5	33//

FACTOR OF SAFETY RAPID DRAWDOWN FROM SPILLWAY CREST EL.911.3

SUMMARY-STE	ADY SEEPA	GE SPILLW	Y CREST
TYPE OF AMALYSIS			REGO ES
STATIC	153	153	1.50
EARTHQUAKE	1.20		10

STEADY SEEPAGE AT SPILLWAY CREST			S T
FACTOR OF SAFETY	LO	1.5	20
2 RESISTING PORCES (KIPS)	7580	4792	3199
STATIC ANALYSIS (KIPS)	101.5	158.6	440.3
BRIVING PURCES	5691	6262	657.9

Driving forces (Earthquakes Analysis) = E Driving forces (Static analysis) + A Driving forces

Where Driving forces = 92 Total weight = .05 × 3351.9 K = 1676 (Kips)

PHYSICAL SOIL CONSTANTS UNIT WEIGHT DESIGN SHEAR STRENGTHS								
	UNIT 1	MEIGHT	DESK	ON S	HEAR	81	RENO.	TH8
MATERIAL	PC		0)		ł	1	3
mar cina-c	SAT	DRAINED	Chart	TAM .	COUPE	TAN \$	6 (1UPS	TAN \$
BERM	1150	110.0	90	0	20	,20	0	30
COMPACTED FILL	1250	1150	180	0	10	.20	0	36
FDN. CLAY	1150	1100	120	0	.10	.20	0	.50
SHALE	1400	1400	1-	-	;-	-	0	06

NOTES.

| Tan (0/2) for active wedge is assumed to be one helf the average slope of the outer embankment ? Tan (8/2) for central block and passive wedge . assumed to be zero.

See page force equation is from book entitled Soil Mechanics, T.H. Wu" Section 3/2.
4 # = Saismic coefficient.

DESCRIPTION REVISIONS

DATE APP'D

LITTLE BLUE RIVEP, MISSOURI

LONGVIEW LAKE

TYPICAL STABILITY ANALYSIS RAPID DRAWDOWN AND STEADY SEEPAGE

Sheet No. I

IN 1 Sheet CORPS OF ENGINEERS KANSAS CITY DISTRICT

CHECKLES CHECKLES TO BE CHECKLES TO BE REAL BY

scale as shown U S ARMY JUNE 1978 110

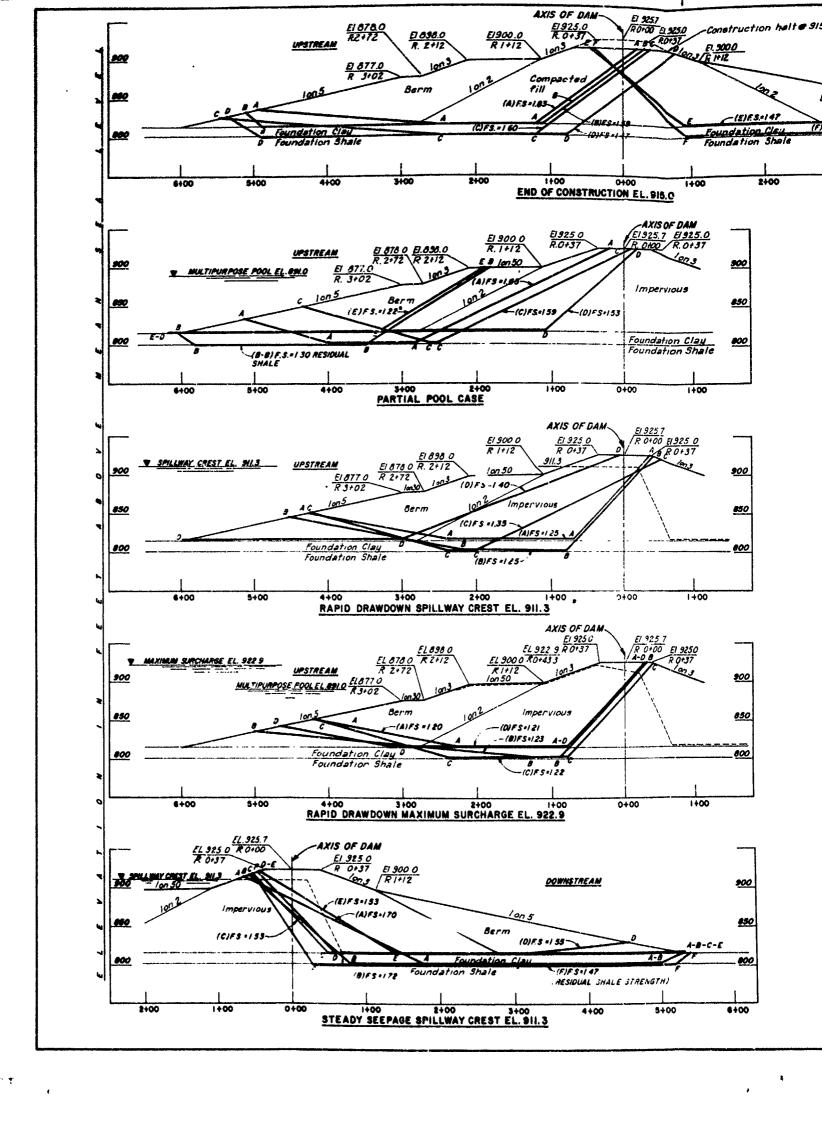
RBL-3 1566

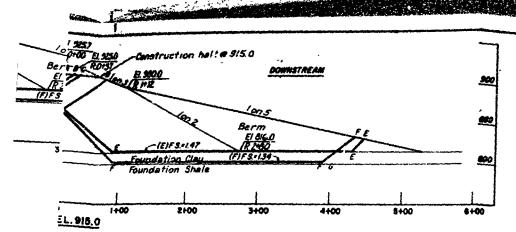
SYM

PLATE NO BH

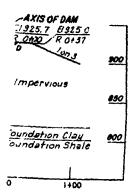
PID DRAW

600

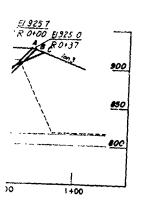

500

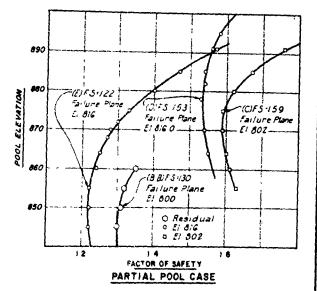

400

STEAD


RY-RAPID OF ANALYSI

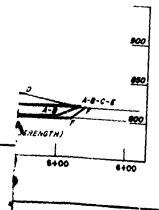
D DRAWD TOR OF S SISTING FO IVING FORC


	END OF CONST	RUCTION CASE	•
SURFACE	FAILURE PLANE EL	ELEWITION	FS.
	3/6	UIS	103
<u> </u>	502	U/3	147
<u> </u>	616	0/5	147
<u>_</u>	802	0/5	14


t# 915 0

	UNIT	WEIGHT	[DESIG	N SHEA	A STRE	NETH	
MATERIAL		CF	•	0.		t "	•	9
	SAT	DRAMED	CRUPSI	TANS	CUGPS)	TANG	CRUPS	TANK
BERM	115	110	090	00	020	020	00	030
COMPACTED FILL (MLLSIDE BORROW)	125	115	150	00	240	020	00	0.36
COMPACTED FILL	125	115	180	00	040	020	00	050
FOUNDATION CLAY	115	110	120	00	040	020	00	050
SHALE (PEAK)	140	140			_		00	060
SHALE (RESIDUAL)	140	140	_				-00	030

STABILITY STUDIES USING RESIDUAL STRENGTHS FOR FOUNDATION SHALES					
SURFACE	CASE	FS			
8-8	Partial pool	130			
F-F	Steady seepage	147			



	APID DRAWDOWN I PEAK S	TRENGTHS	CREST
SURFACE	FAILURE PLANE EL.	POOL LEVELS	FS
A	016	911 3 1891	7 24 -
	802	9/13/09/	1 25
C	802	911 31091	7 24
0	316	91/3/09/	140

R 0000	7 EI 9250 R 0+37	7
1	923	900
/	\	650
		600
+00	1100	

RAPID DRAWDOWN FROM MAXIMUM SURCHARGE PEAK STRENGTHS						
BURFACE	FAILURE PLANE EL.	POOL LEVELS	***			
	816	9229/89/	120			
	802	9229/09/	723			
c	802	9229/091	122			
0	0/6	922 9/09/				

87	EADY SEEMAGE SI PEAK I	PILLWAY CREST	EL. 911.3
URPACE	FAILURE PLANE EL	POOL LEVELS	
	ave.	9113/89/	
	sar	91/3/89/	170
c	816	9113/891	172
D	8/6	91131891	/53
	816	9113/891	155
	010	9113/891	/53

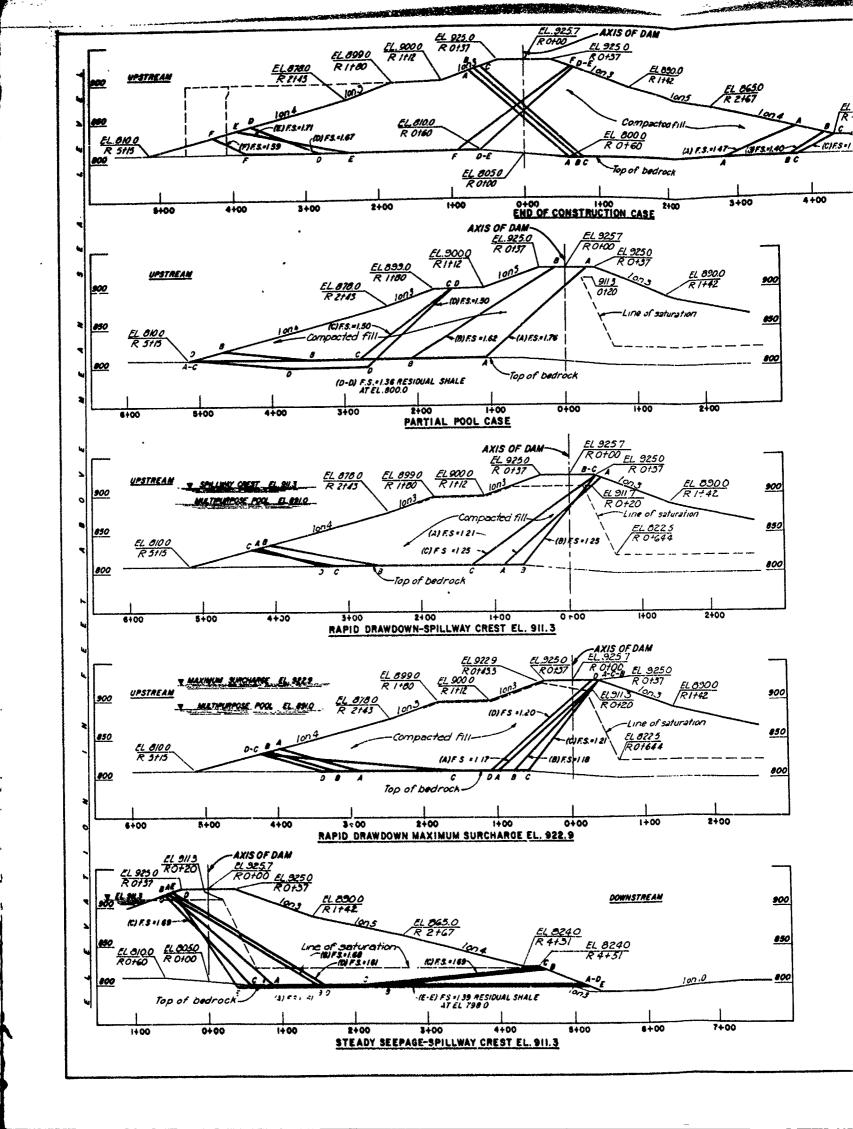
SYM

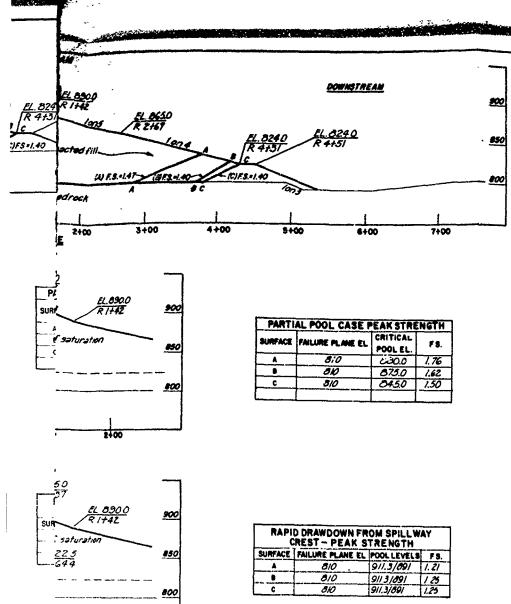
DESCRIPTION REVISIONS DATE APP D

LITTLE BLUE RIVER, MISSOURI
LONGVIEW LAKE
MANGRENT CRITERIA AND PERFORMANCE REPORT

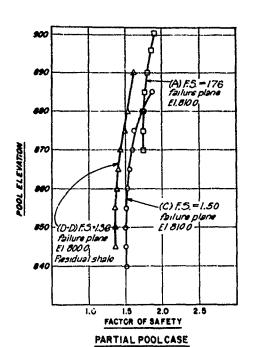
EMBANKMENT STABILITY ANALYSIS SUMMARY VALLEY SECTION

IN I Sheet
CORPS OF ENGINEERS
KANSAS CITY DISTRICT
Submitted:


Sheet No. !


U & AMMY AME 1978

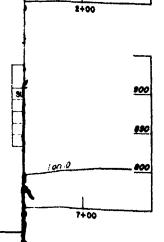
COMPRED BY A POWNER TOWN AND COMPRED BY A C B JEB


CONTROLLED & WITE STOCKED ON PROPERTY OF THE P

RBL-3-1567

END OF CONSTRUCTION CASE						
SURFACE	FAILURE PLANE EL.	LOCATION	F.S.			
A	800	0/5	1.47			
•	800	2/3	1.40			
D	810	<i>U/3</i>	1.67			
F	00	U/5	1.59			

	UNIT WEIGHT		C	ESIGN	SHE	IR ST	RENGT	H
MATERIAL		CF	-0) <u>"</u>	*1	!"		;"
	SAT	DRAINED	CO(IPS)	TANO	CKIPS	TAN 8	COCIPS)	TAN E
COMPACTED FILL	1250	1150	1.80	0.0	.40	.20	00	.50
SHALE (PEAK)	140,0	140.0	200	2.0	200	2.00	2.00	2.00
SHALE (RESIDUAL)	1400	140.0	000	0.0	00	0.0	0.0	030


SU	7 EL 0000 2 RI+42 900	
_	saturation 450	
	•00	

2+00

--250

RAPID DRAWDOWN MAXIMUM SURCHARGE EL. 922.9						
SURFACE	FAILURE PLANE EL	POOLLEVELS	FS			
A		9229/891	1.17			
•	810	922.9/09/	1.10			
С	810	922.9/891	1.21			
D	810	922.9/89/	1.20			

SURFACE	CASE	FS
0.0	Partial Pool	1.36
E.E	Steady Seepage	1.39

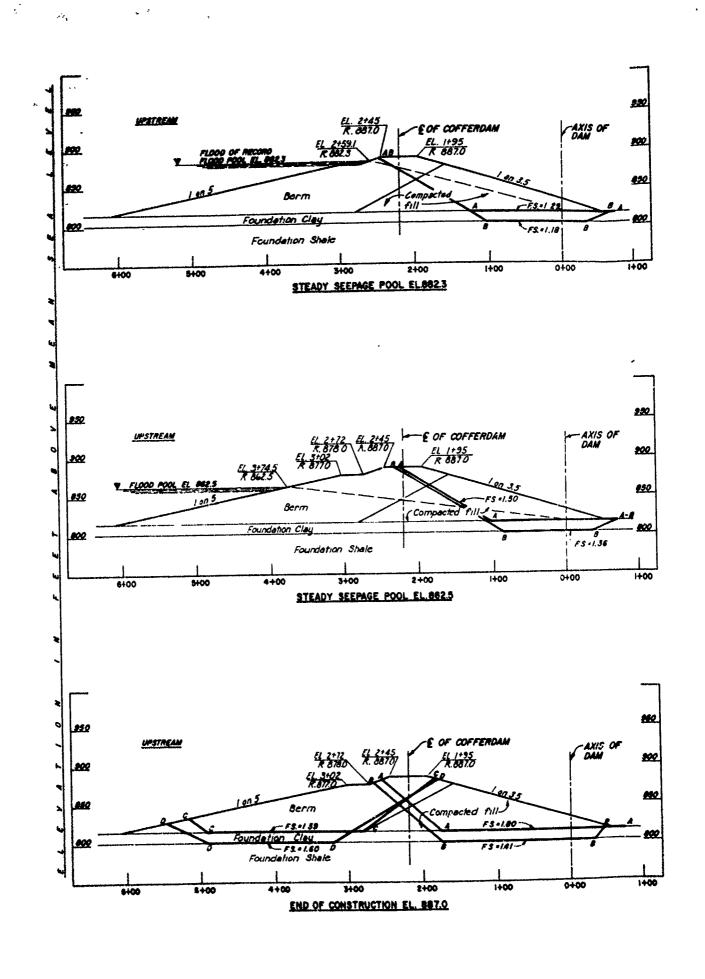
STEADY SEEPAGE AT SPILLWAY CREST EL. 911.3					
SURFACE	FAILURE PLANE EL	FE			
A	800	1.61			
8	800	1.60			
<u> </u>	800	/69			
D	800	1.61			

/ /		1
		1
SVM	DESCRIPTION DATE APP'D	. 1
72	REVISIONS	1

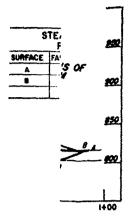
LITTLE BLUE RIVER, MISSOURI

LONGVIEW LAKE

EMBANKMEN' STABILITY ANALYSIS SUMMARY CONDUIT SECTION

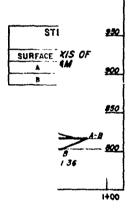

Sheet No. 1

In I sheet CORPS OF ENGINEERS KANSAS CITY DISTRICT Land & Code


BAB

J. PM RGD Scale: as shown

RBL-3-1568



SURFA

POOL EL. 882.	CASE 3
FAILURE PLANE EL	F.S.
816	129
802	1.18
	FAHLURE PLAME EL

	PHYSK	CAL SO	L CO	NST/	NTS			
	UNIT	WEIGHT			SHE		MENGT	H
MATERIAL		CF		3,	•	*	•	•
	SAT,	DRAINED	CDUPSI	TAN	Chars	TAKE	CHUPS	TAN 6
BERM	115	110	0.90	0	020	020	00	030
COMPLCTED FILL	125	115	1.80	0	040	020	3	036
FOUNDATION CLAY	115	110	120		040			
SHALE	140	140	=	=		=		060

ADY SEEPAGE CA POOL EL. 862.5	SE
FAILURE PLANE EL	F. S
8/6	150
802	/ 36
	POOL EL. 862.5 FAILURE PLANE EL 8/6

Notes
I. Elevation 8823 is the maximum lake elevation for the all season flood of record routed through the outlet works 2 Elevation 8625 is maximum elevation for the third fluod of record for the period TAug -28 feb routed through a the works. outlet works

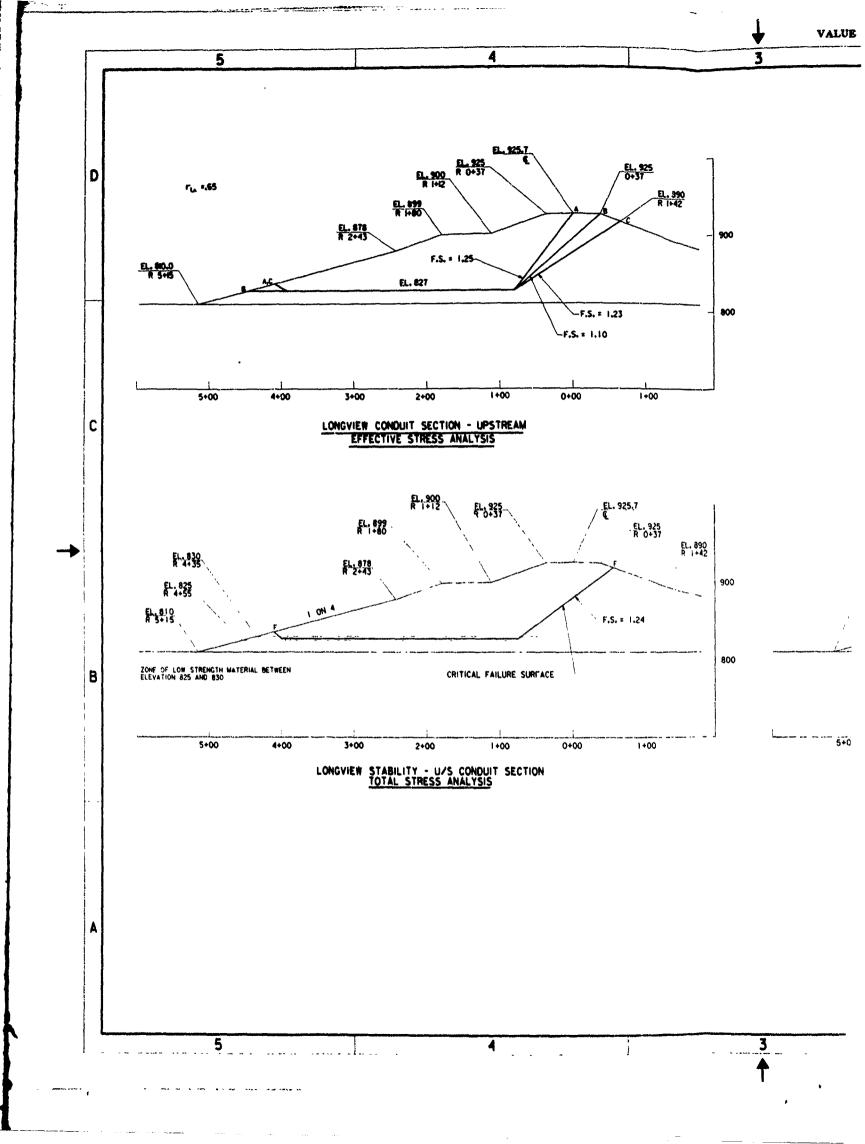
	_	250
SURFACE	KIS OF	
·	44	900
<u>c</u>	-	
* DOWNSTR	E.,	850
	4	
	7	#22

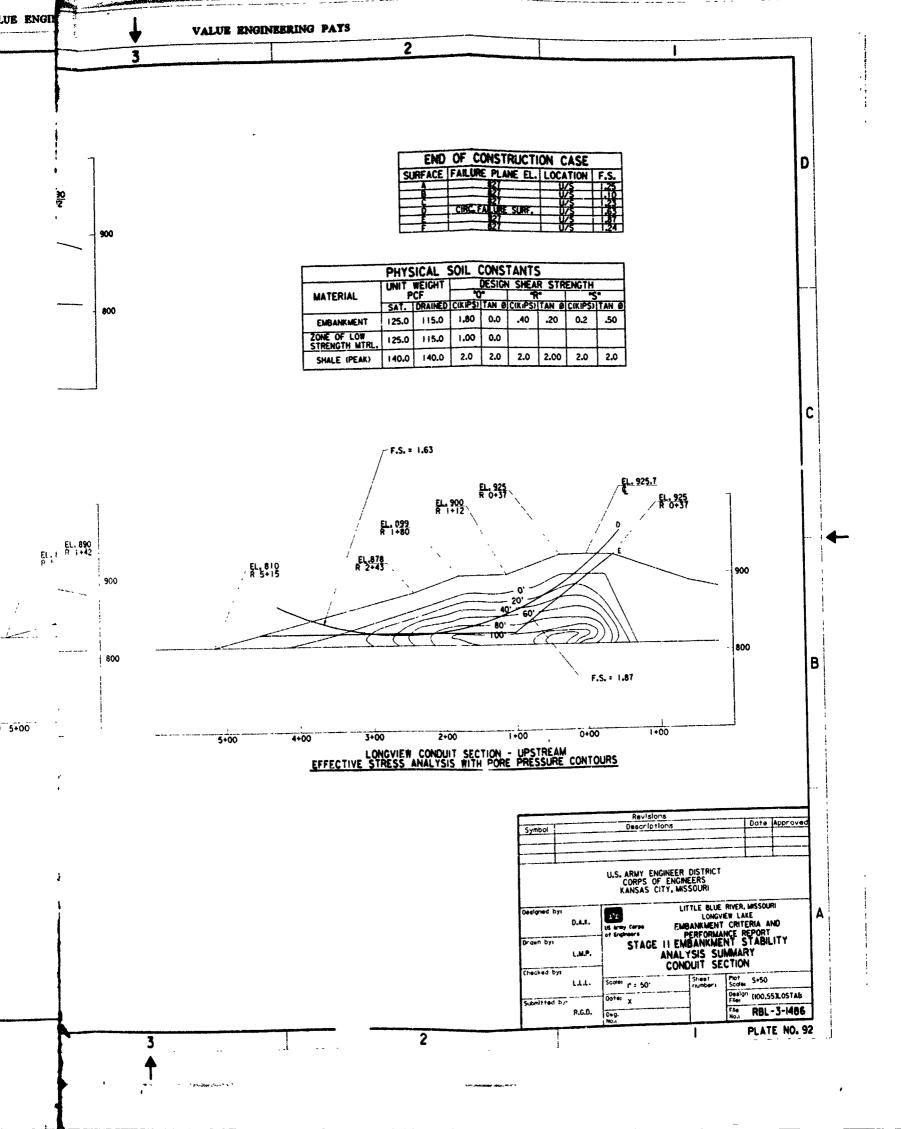
END OF CONSTRUCTION POOL EL. 887.0									
SUMFACE	PAILURE PLANE EL.	LOCATION	F. S.						
<u> </u>	816	0/5 *	180						
	802	0/3 *	141						
Ç	8/6	U/3	159						
<u> </u>	802	W3	160						

* DOWNSTREAM & OF CUFFERDAM

DATE APPD. LITTLE BLUE RIVER, MISSOURI
LONGVIEW LAKE
EMMANGMENT CRITERIA AND PERFERMANCE REPORT

EMBANKMENT STABILITY ANALYSIS SUMMARY COFFERDAM

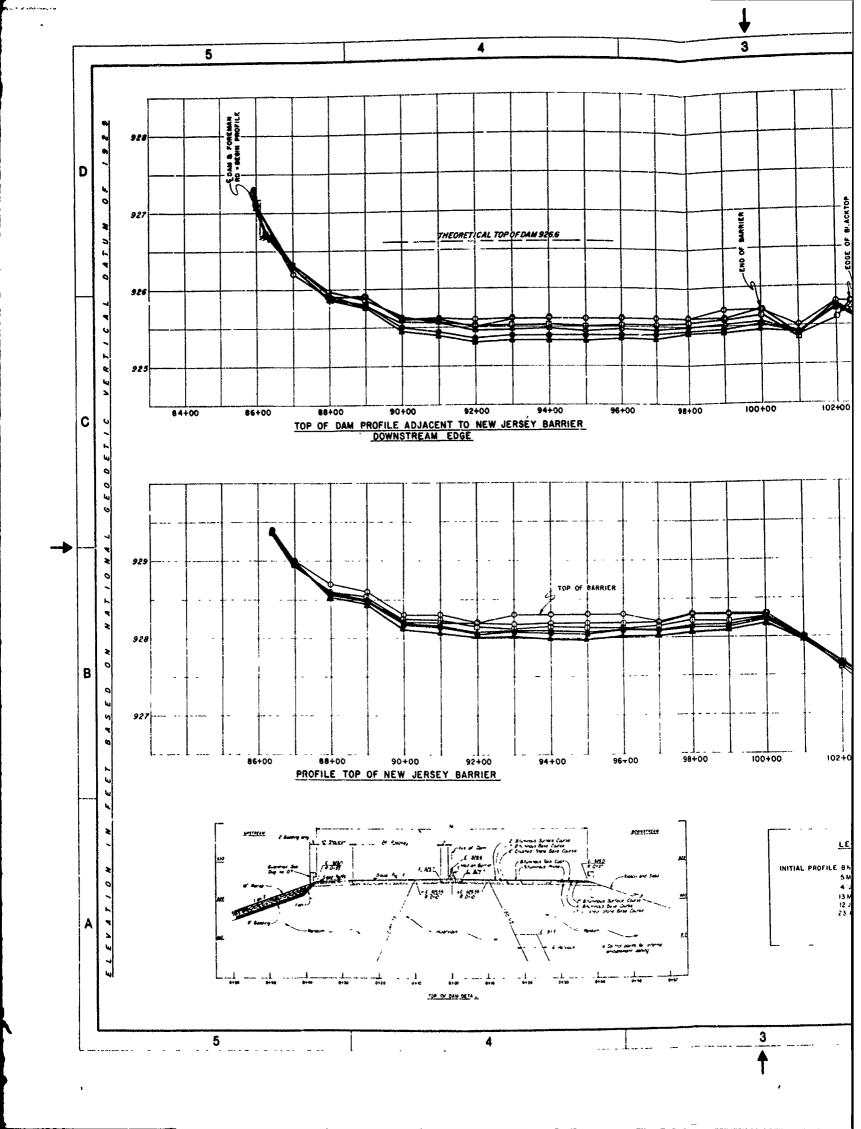

In 1 sneet CORPS OF ENGINEERS KANSAS CITY DISTRICT

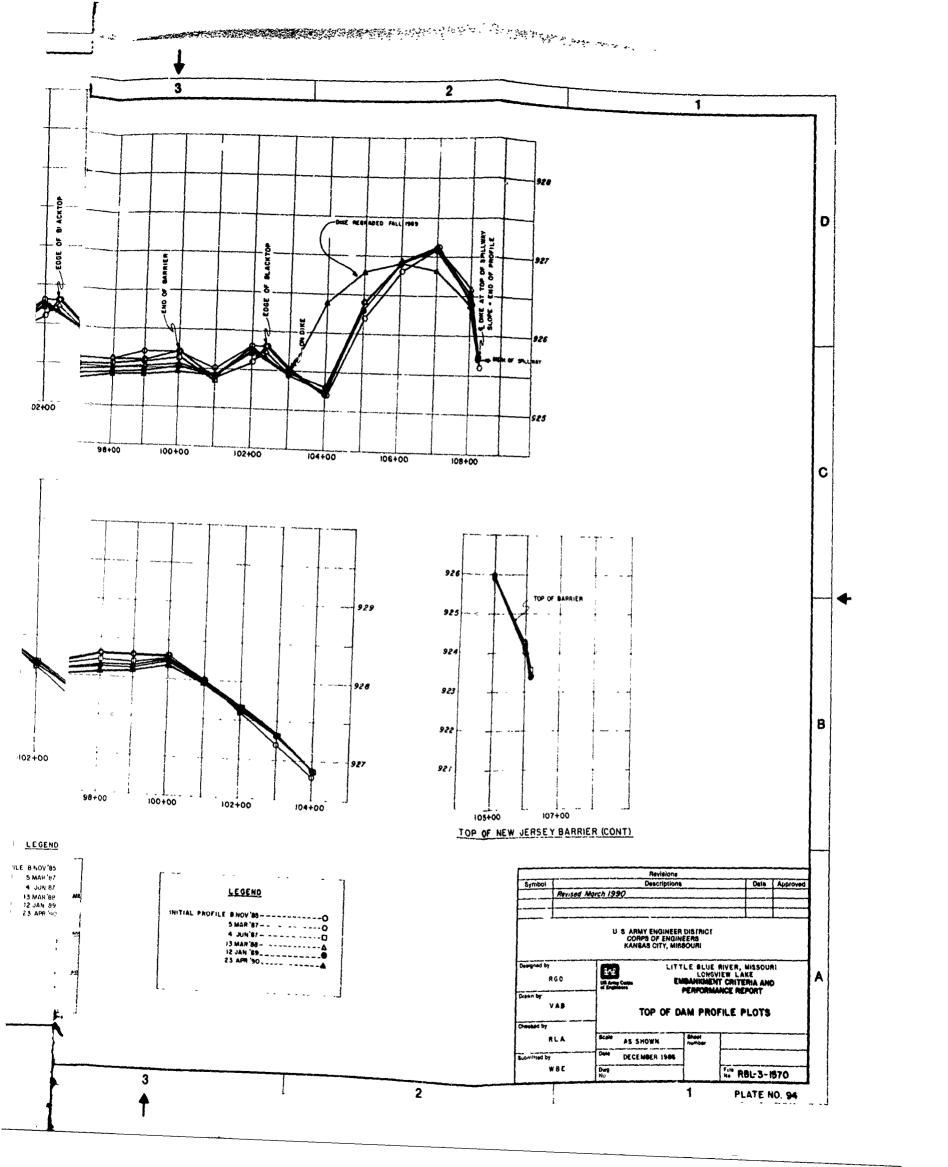

SYM

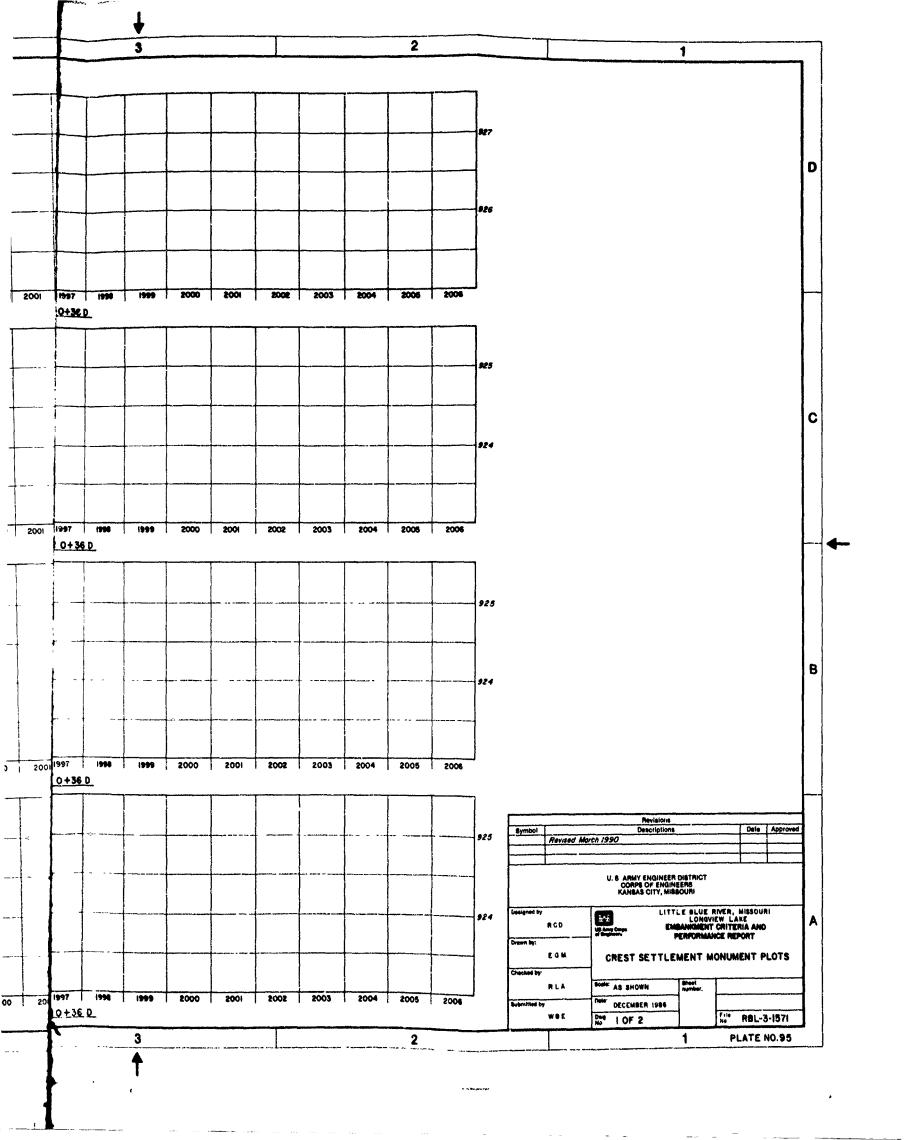
HONE & WATER DA

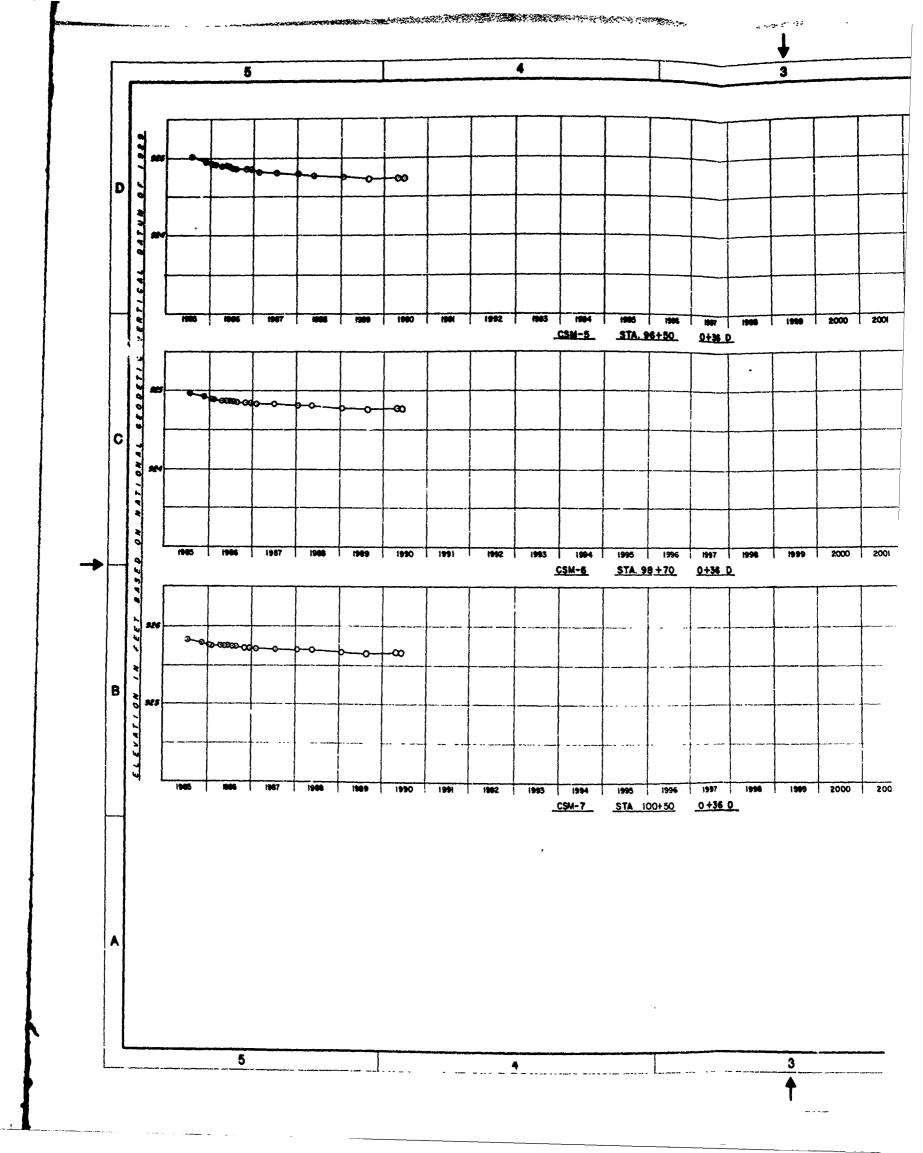
Sheet No. 1

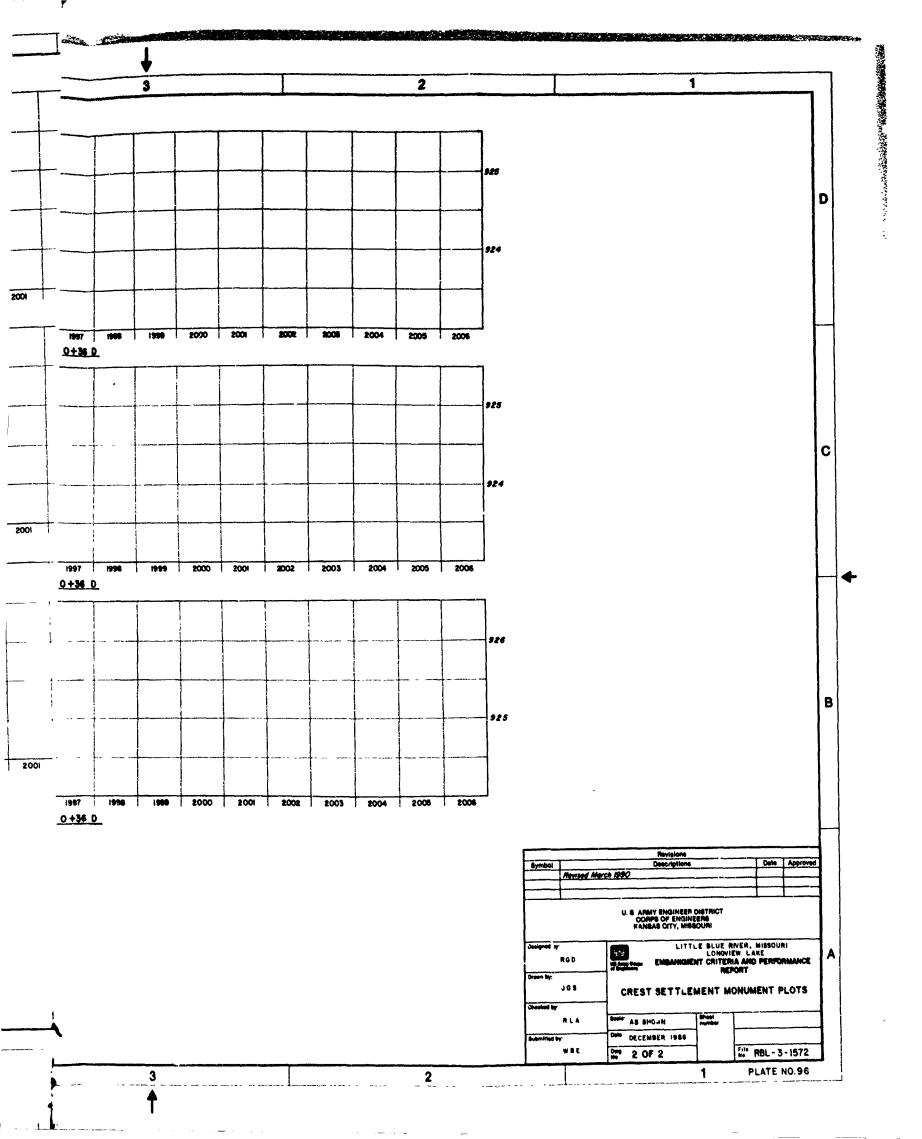
RBL-3-1569 PLATE NO. 91

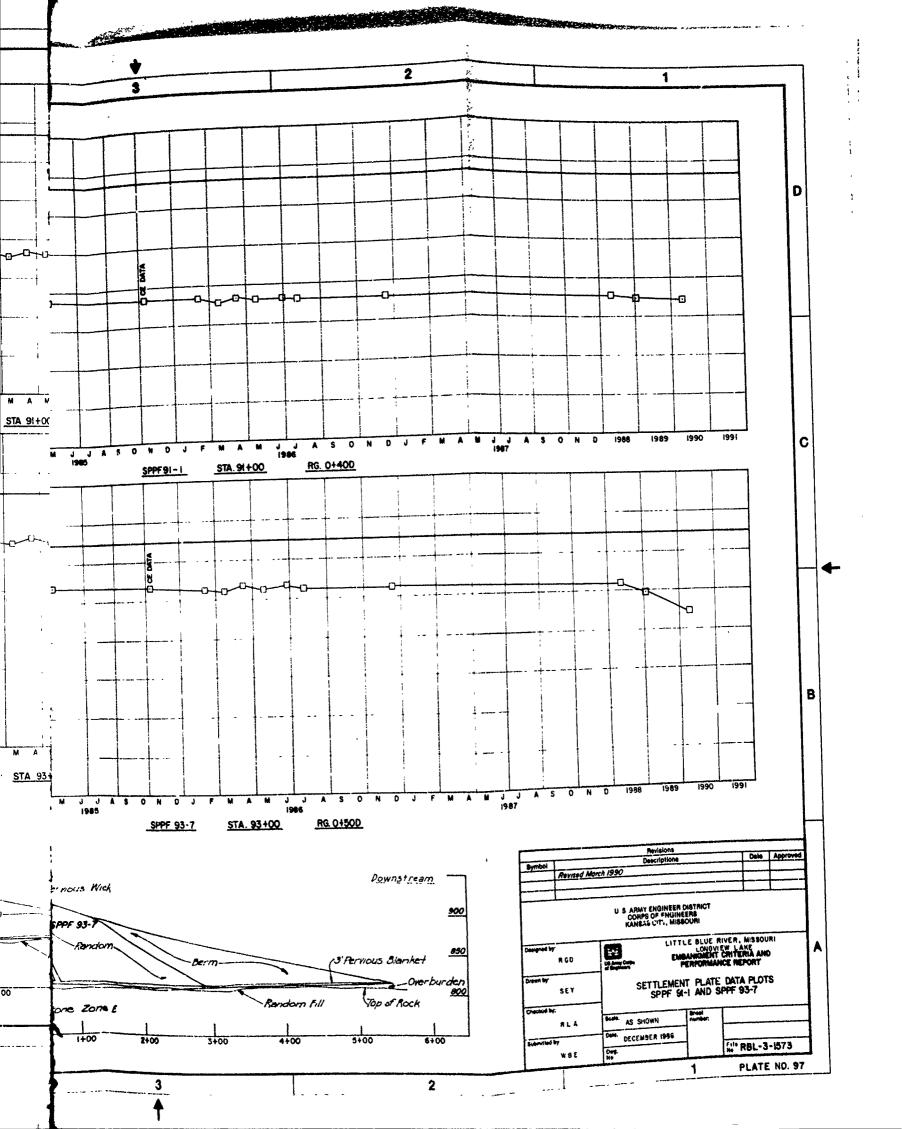


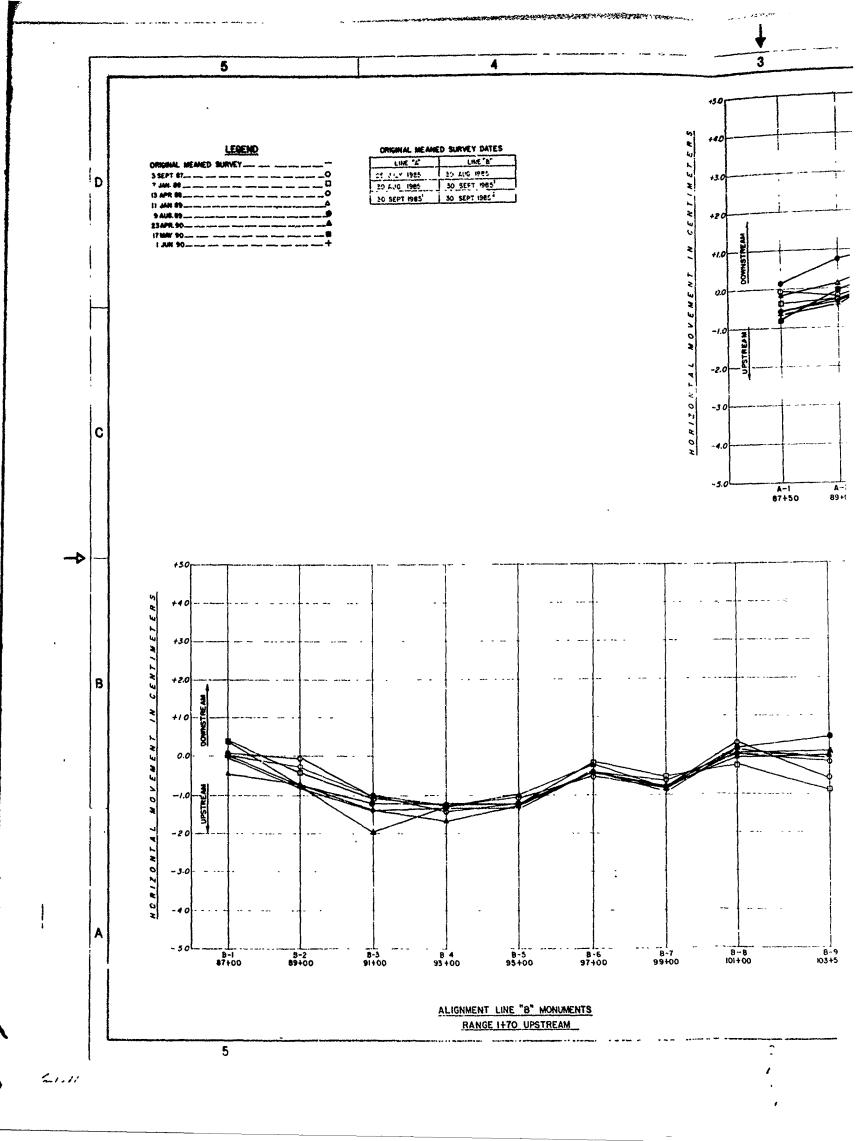


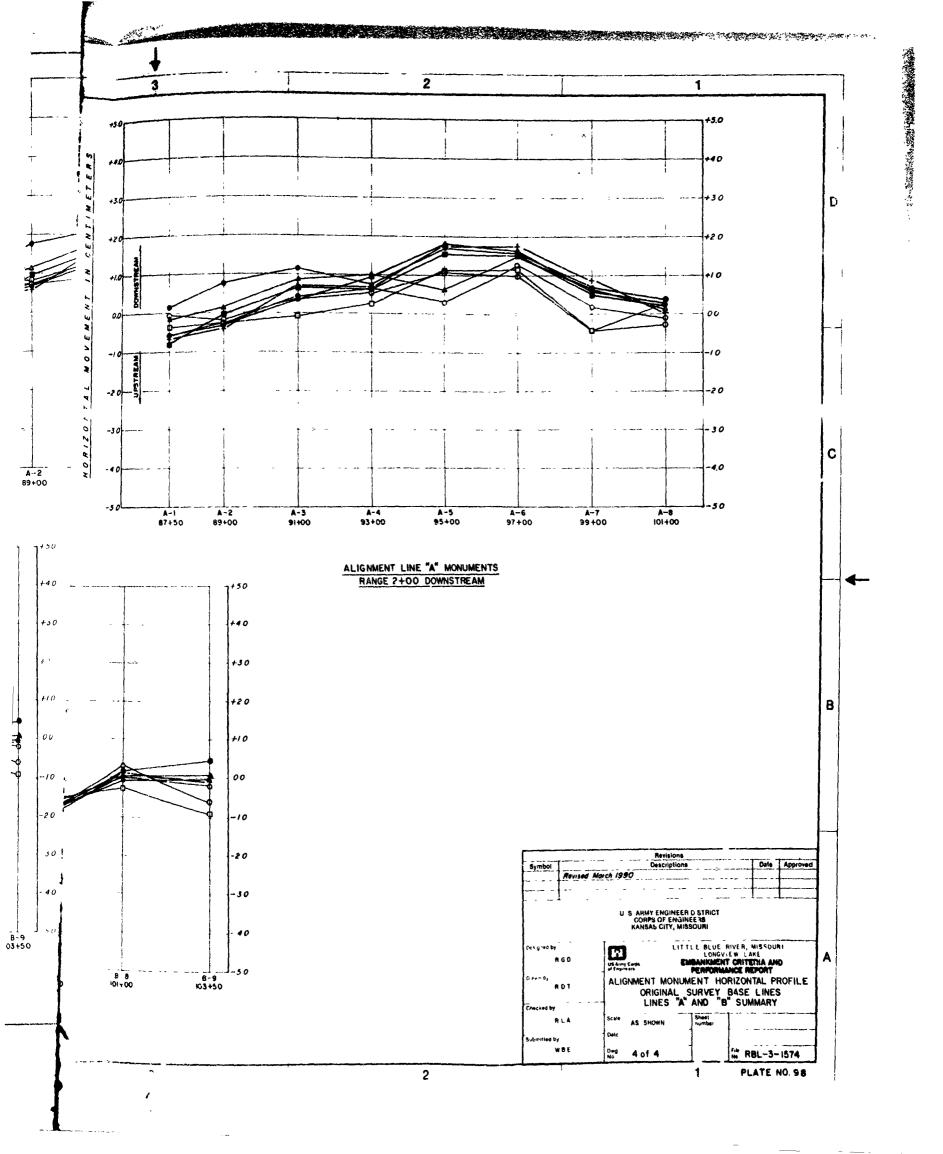

VAL

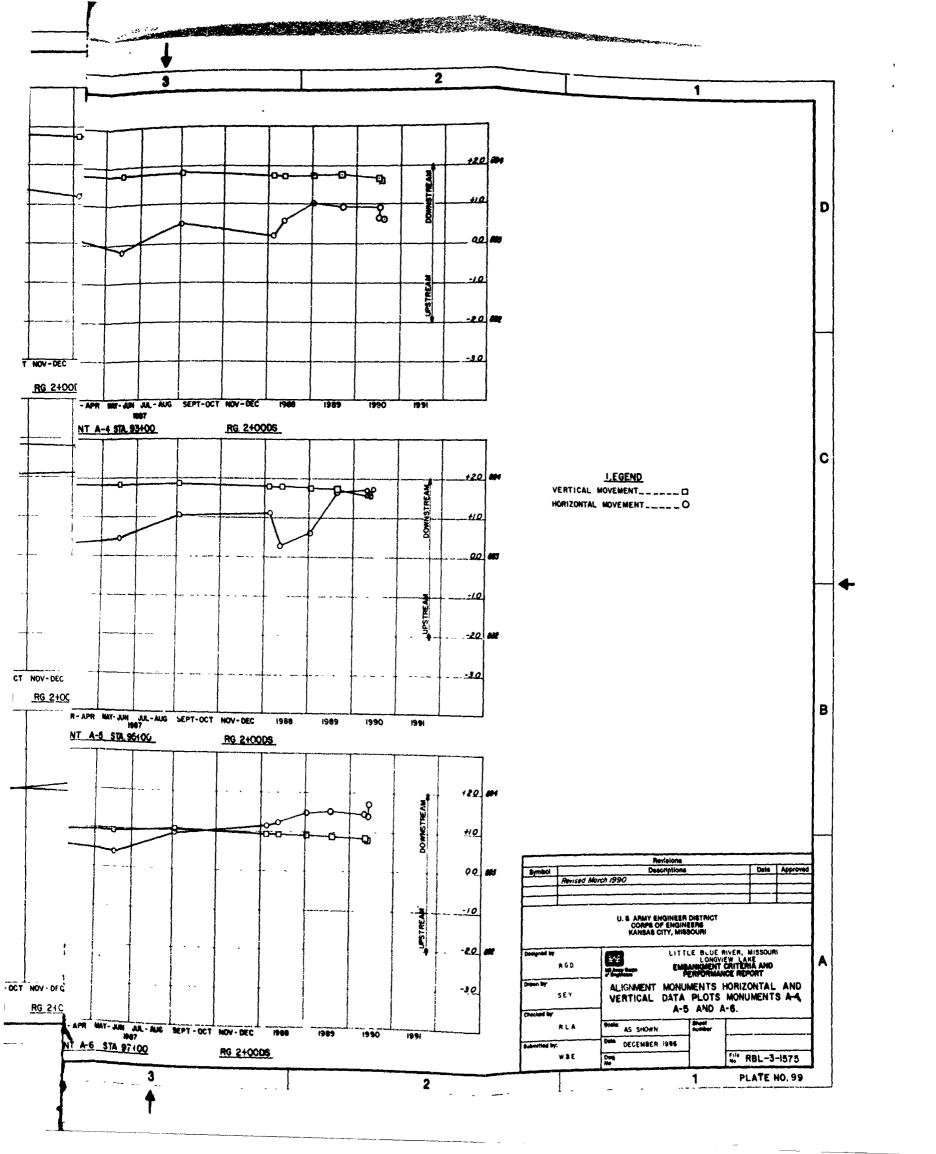

1.								PLACEMENT	REQUIREM	NTS	
D	MATERIAL	STAGE	MAJOR SOURCE	MATERIAL DESCRIPTION	CLASS.	ZONE USAGE	EQUIPMENT	HAXIMUM UNCOMPACTED LIFT THICKNESS (INCHES)	NUMBER OF PASSES	DENSITY	MOISTURE
	MPERVIOUS *		COLUMN SECURITARIA	MINISTER.	8		TAMPNE ROLLER	•	•	SEZ OF MANIMAN SAY SERVITA AT OFFICER MASSIVE CONFEST	ensing compat
	IMPERVIOUS [®]	H	MORNING DECAMATION STREET, E	CLIT WITH GR. SHARE, WYTHER WY MILLS BL. SET LLCSS MILLS BL. SET LLCSS MILLS BL. SET LLCSS MILLS BL. SET MILLSEN ST-60 AND MILLS BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN ST-60 AND MILLSEN BL. SET MILLSEN BL. SET MILLSEN BL. SET MILLSEN BL. MILLSEN BL. SET MIL	8	eggewege zoet and September and handow zoets	TOPING NULLER	•	4	YES OF MACRIMIA THE DESCRIPT AT OF THE MEN'S THE CONTENT	+32 TO -22 SO OF THE SOUST UNK CONTENT
С	RANDOM "	ı	ACQUINES CICLIVATION		VARIES.	RMMON 2016	TAMPING ROLLER PHEMATIC ROLLER	12	3	SEX OF MAXMEN DRY EXPESTY AT OPTIMEN MYSTUME CONTENT	* NX TO -2X OF STREET MARSTURE CONTEN
	RANDOM®	11	MODUMED ENCAMATION		VAMES	RANGE FORE SPELINAT SINE	TAMPUG ROLLER PHELMATIC MOLLER	12	3	950, OF MANHEM ORY SENSITY AT OF INCAM MOPSTURE CONTENT	+35, TO -21, of optimizati MOISTURE CONTE
	BERM	l	REGUINGS CACAVATION		OUTURE S'	Miles Sour	PHERMATIC MOLLER TAMPING MOLLER	24	2	NOVE SPECFED	COMPACTION EQU
	BEAM	11	REGULARD COCAVATION		VARIES	Bilan Sour	TAMPING ROLLER PHELPILATIC ROLLER	12	4 2	HOME SPECFIED	OF THE CONTROL OF THE CONTROL OF THE CONTROL OF COMPACTION EX
	DIVERSION DIKE AND DOWNSTREAM COFFERDAM	,	REQUIRED ENCAVATION AND SCHOOL	MINISTER WHEEL	VARIES	OWENSON DRE AND DOORSTREAM COPPERDAM	TRUFFIC COMPACTED	24	EVEN NOUTING	NOME SPECFED	COMPACTION EX
	CHANNEL FILL. DIVERSION DIKE	11	RESIDENCE PECAVATION BEFORE	TO NAME OF STREET	VAL ES	OMODE FEL DIVERSION DIKE	TRAFFIC COMPACTED	24	EVEN ROUTHG	NCME SPECIFIED	OF DISCOURT OF THE ALLOW LINE MOVEMENT OF COMPACTION EC
В	DOWNSTREAM COFFERDAM	11	REQUIRED EXCAVATION BOOKINGS	MATERIAL MOT BETTARK PAR PLACEMENT ELSEWHERE	VAMES	DOWNETREAM COFFERDAM	TAMPING ROLLER PREJMATIC ROLLER	12	3	NONE SPECFED	OF COMPACTION EC
	IMPERVIOUS CLAY BLANKET))	REQUIRED ENCAVATION STREET AND STOCKPILE	CLAY BITH (ST. BRAYD, MRD LIGHT LATE LATE THAN 60	84	RIGHT ABUTMENT CLAY BLAMET	TAMPING ROLLER PREUMATIC ROLLER	12	3	95% OF MAXHAM DRY DENSITY AT GPTARAM MOISTURE CONTENT	+3% TO -2% OF OPTIMEM MOISTINE CONT
	SPECIAL BACKFILL	J AND II	REGURDS EXCAVATION OFFRITZ SOURCES	MARRY CLE IN SPERVICUS CONE RANGOS IN RASHOUT THE PERVICUS IN PERVICUS ESME	VARIES	ADJACENT TO STRUC TUPES OBSERVATION DEVICES AND ROCK SUPFACES AND TO FILL RINGOLL ANTES	POWER TAMPER INFERVIOUS AND RANGOM VISRATORY PLATE IPERVIOUS	3	AS REQUIRED AS REQUIRED	DAY DENSITY BOX RELATIVE DENSITY ***	
	TOPSOIL	AND II	MEGANIC CYCAYATICAL SIT STREET,	MATERIAL CONTAINED OFFICE	YAMES	MALL TO ME	TRAFFIC COMPACTED	12	EVEN HOUTING	PIRAL WELL-PACKED CONDITION	CONTROLLED TO UNIASSISTED MONUMENT OF EQUIPMENT
	PERVIOUS	ı	OFFERT SOURCES	S - 12 vall of 30	,	PENYOUS GLAMET, PENYOUS INCO AND PENSON BACKFUL IN PENYOUS ZONES.	PLATE VERNATORY COMPACTOR VERNATORY ROLLER	12	AS NEOLINED	ATT ATIVE UDHSITY	SATURATED
	PERVIOUS	Н	many metro many di twers and is tweeth	CEMPANDE MILITARE SME 18 - SEE PARE ME 16 5 - EE PARE ME 200	•	PERVICES MOS AND SPECIAL BACKFUL IN PERVICES COMES.	PLATE VIBRATORY COMPACTORY VIBRATORY ROLLER	12	AS REQUIRED	70% RELATINE GENSHTY	SATURATED
	ROCK FILL	ı	REQUIRED EXCAVATION	THE LESS NAME OF STREET	91	NOCE FEL ZONE OVER AND LINGUE CLAY BLANKE		36	NAE	MONE	NONE
A	ROCK FILL	1)	SESURGS EXCAVATION AND STUCKHULE	(170 Man 174 August 170 Marine (175 Than 174 August Americae Marine Ma Marine Marine Ma Marine Ma Ma Marine Ma Ma Ma Ma Ma Ma Ma Ma Ma	**	MOCE FEL TONE OVER CLAY IN MALE?		36	HEME	HONE	HONE
	BEDONG	1	REQUIRED EXCAVATION	**************************************	Va 87	BEDDING FOR RIPINAP SLOPE PROTECTION		12	NONE.	NONE	HOME
	BEDDING 19-INCHO	11	GETHIE COMMISSION		W	RESPONSE FOR PROTECTION		FIRE LAYER THICKNESS			HOME
	BEDDING (1.5-INCH)	H	GFFSITE COMMERCIAL	COMMANDE LINESTONE OF THE SECRETARIES SUBSTANCES.	6,	MERCHAN TON		FILL ATER THICKNESS	.		HOME
	RIPRAP	11	OLLEN COMMENCANT		160 81	SLOPE PROTECTION	CLAMERRADALL RACE RAMET OR BRANCE PIEL	PULL LAVER THICKNESS	HONE	MONE	NOME

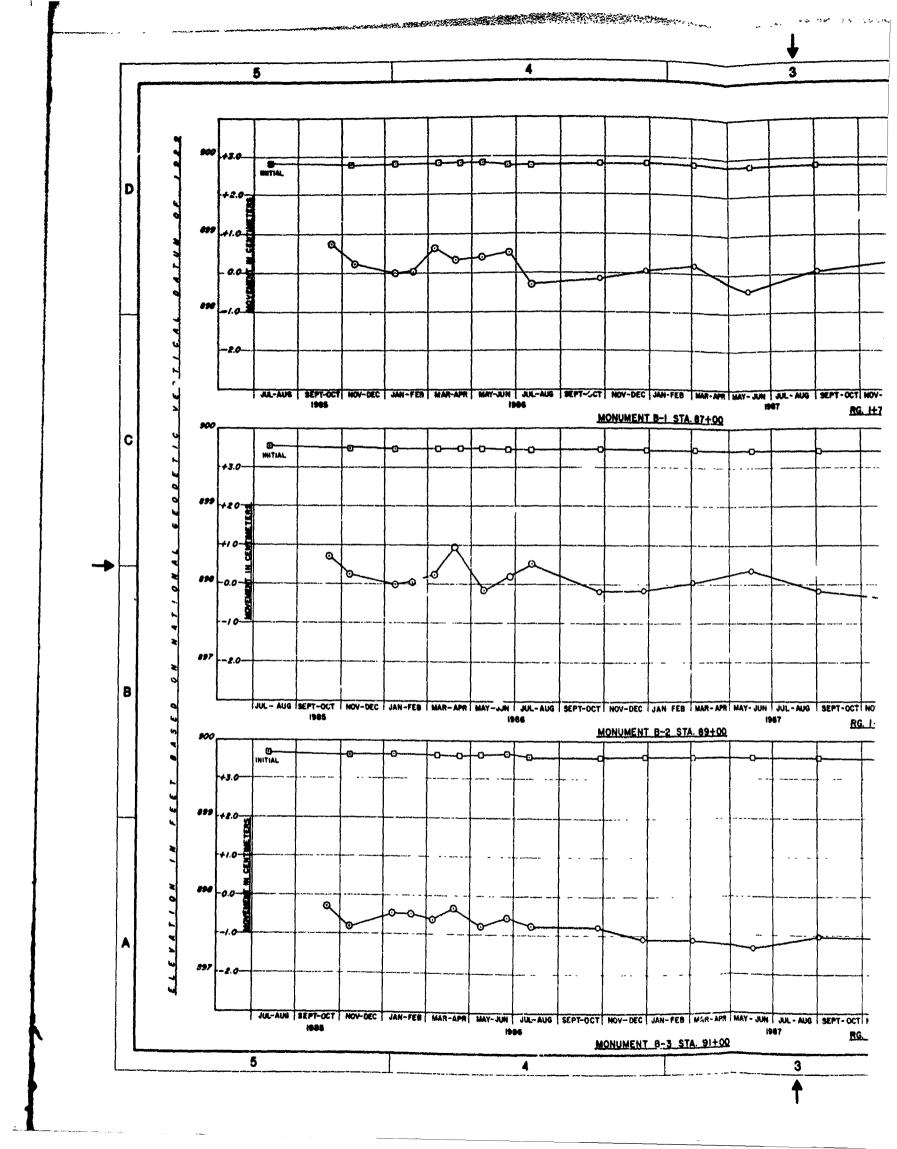

VALUE EN

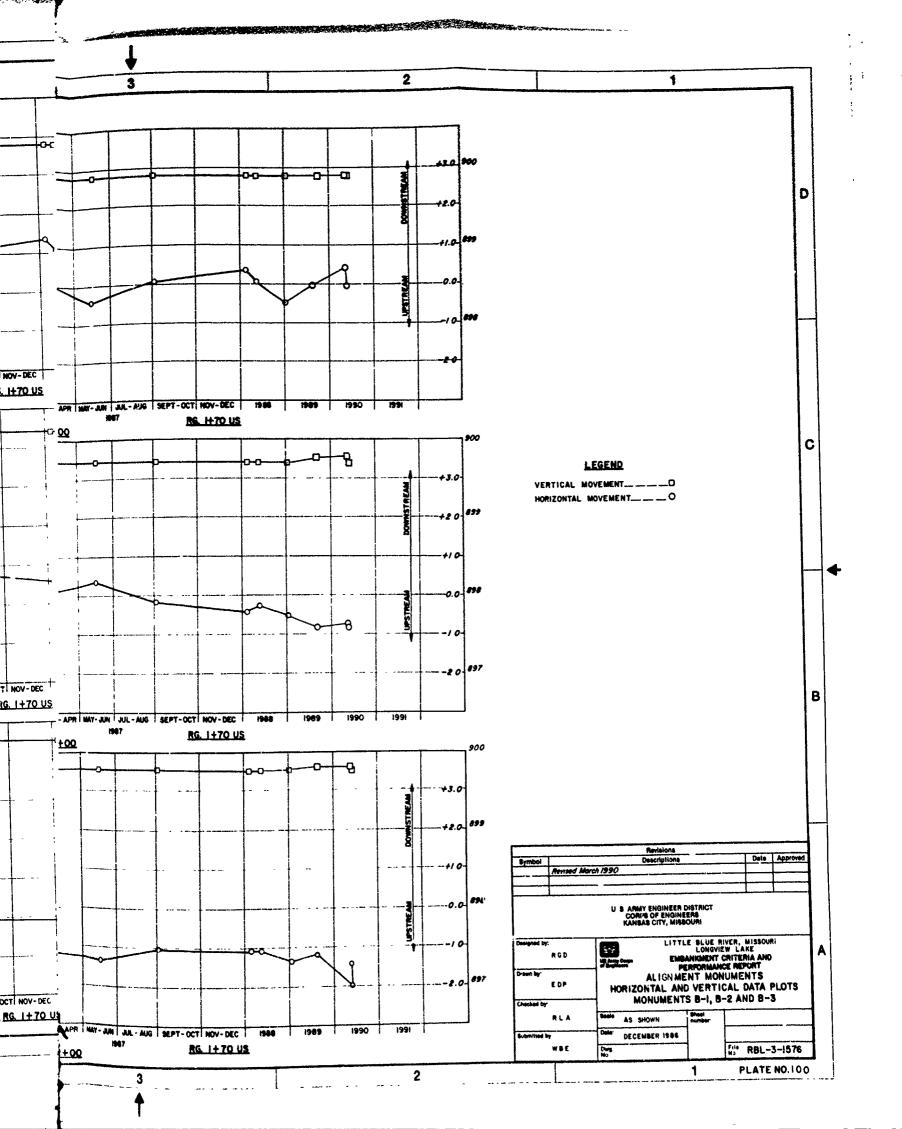


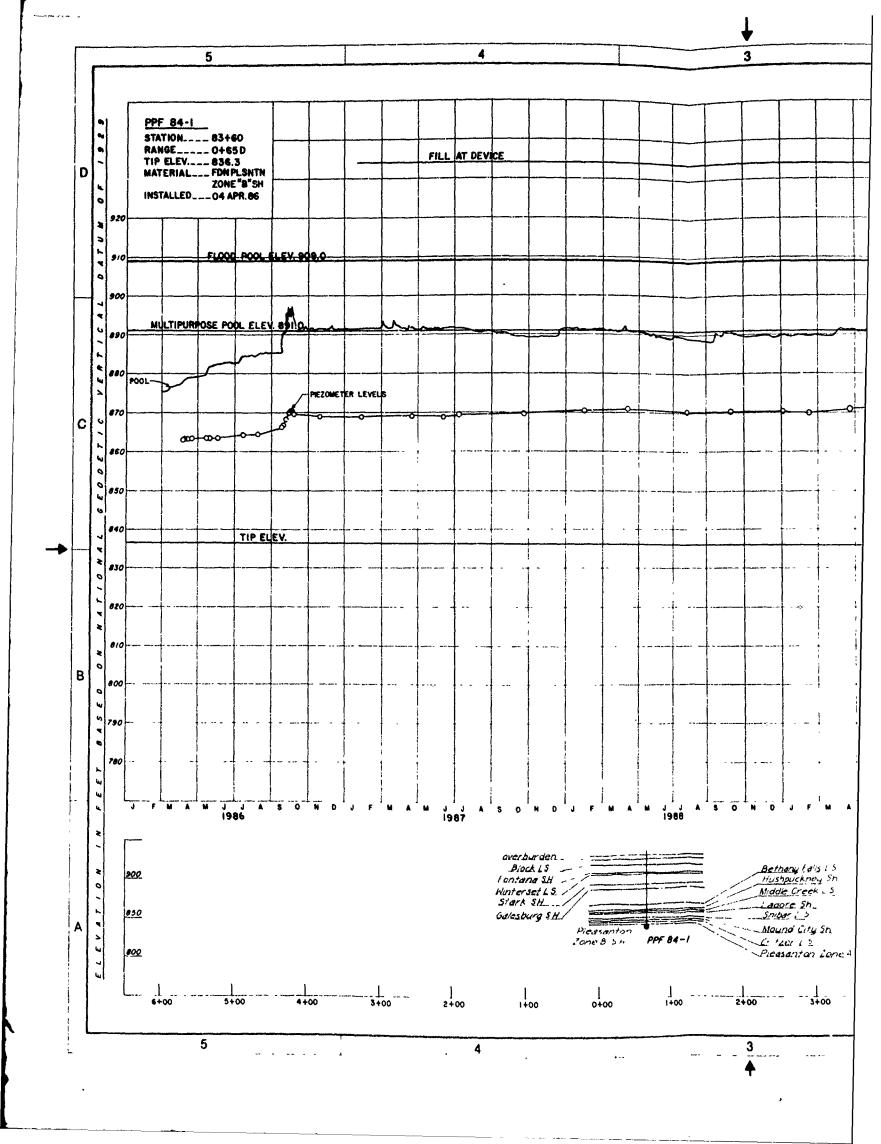


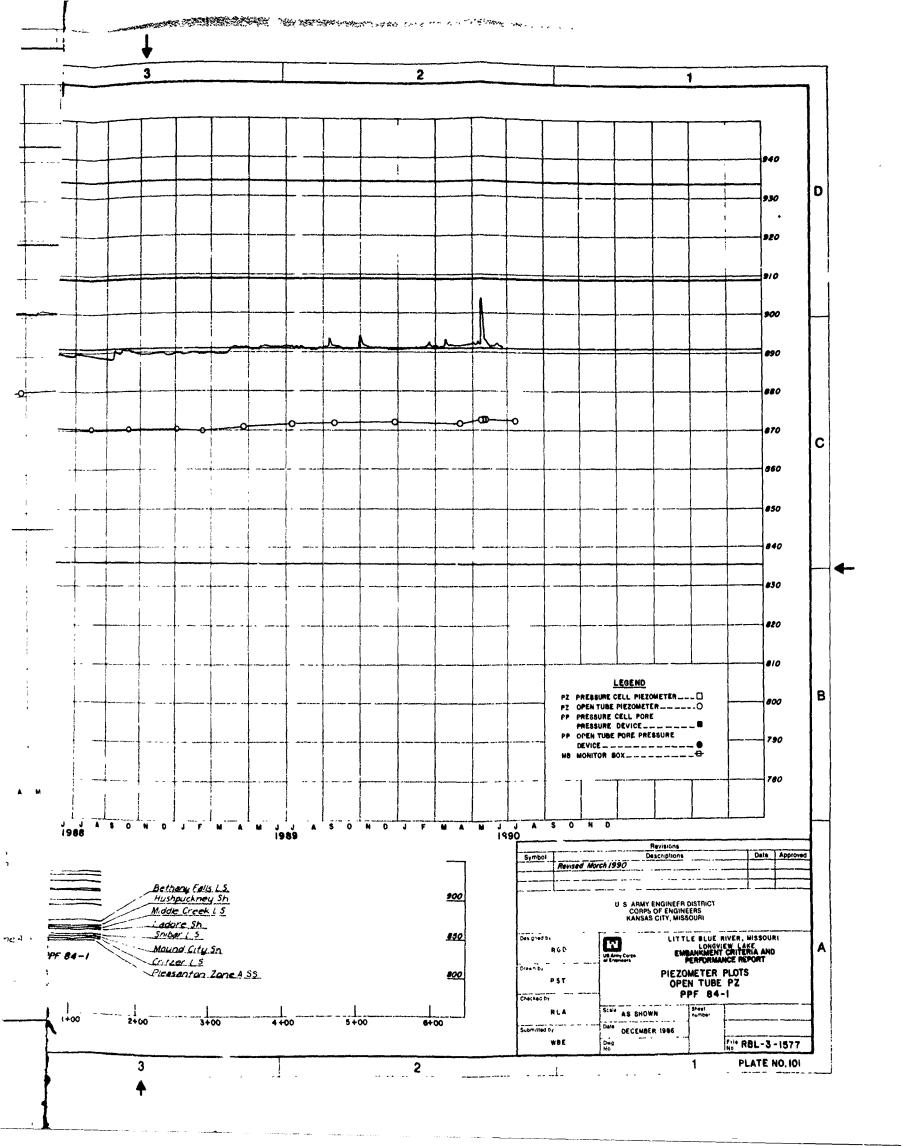


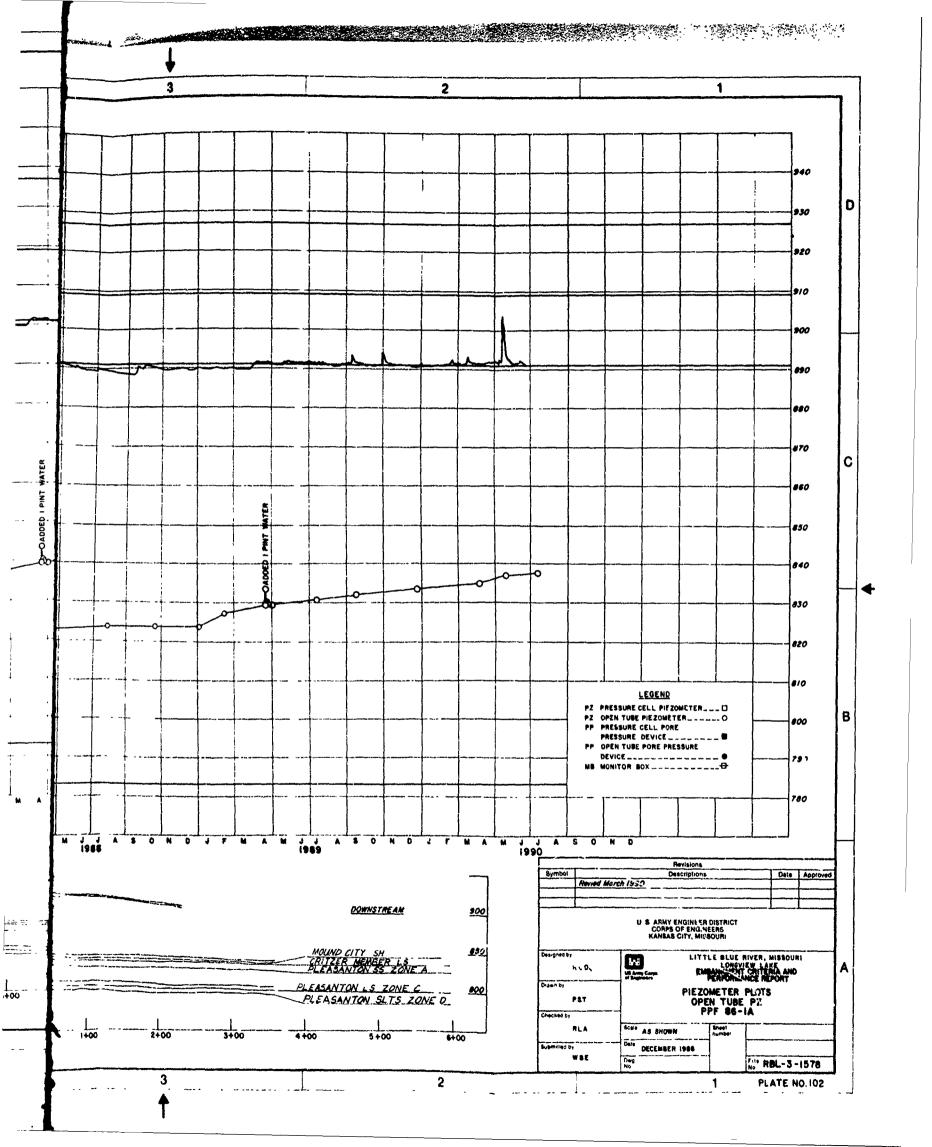


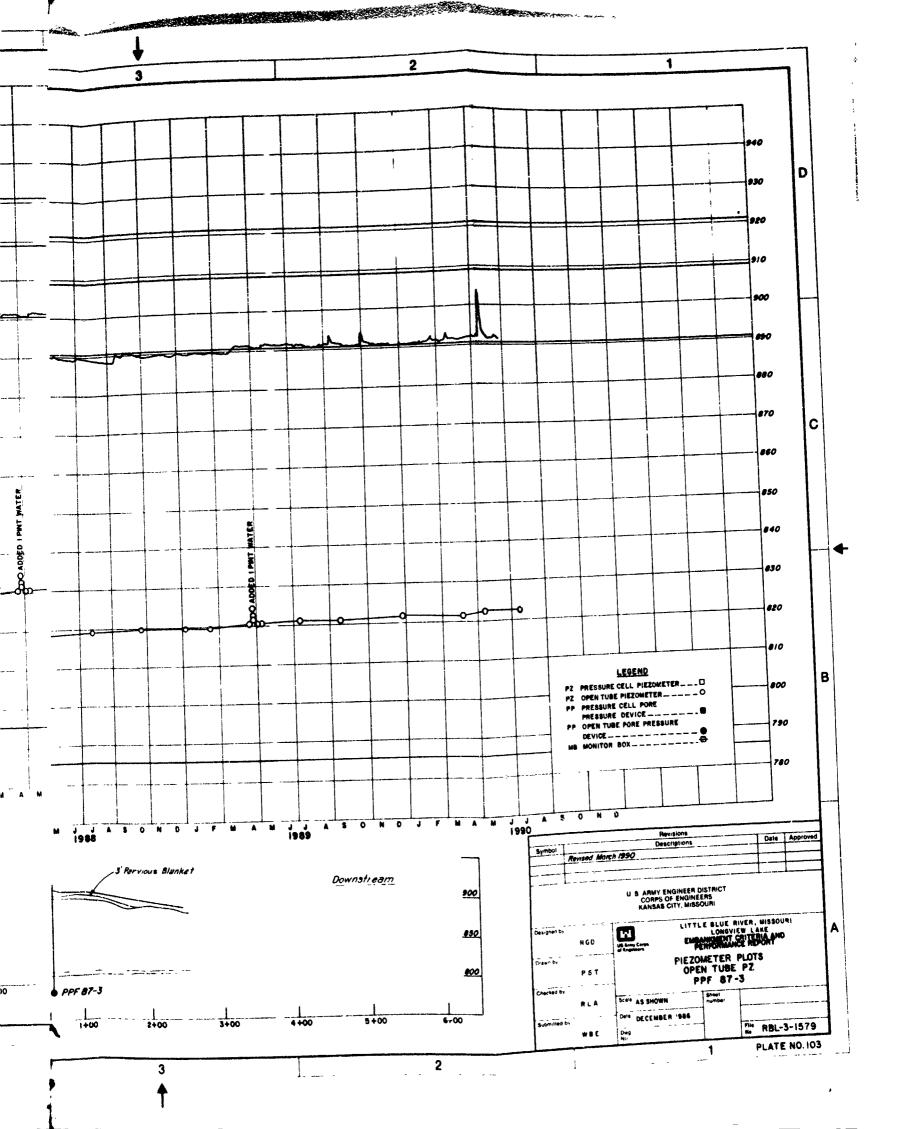


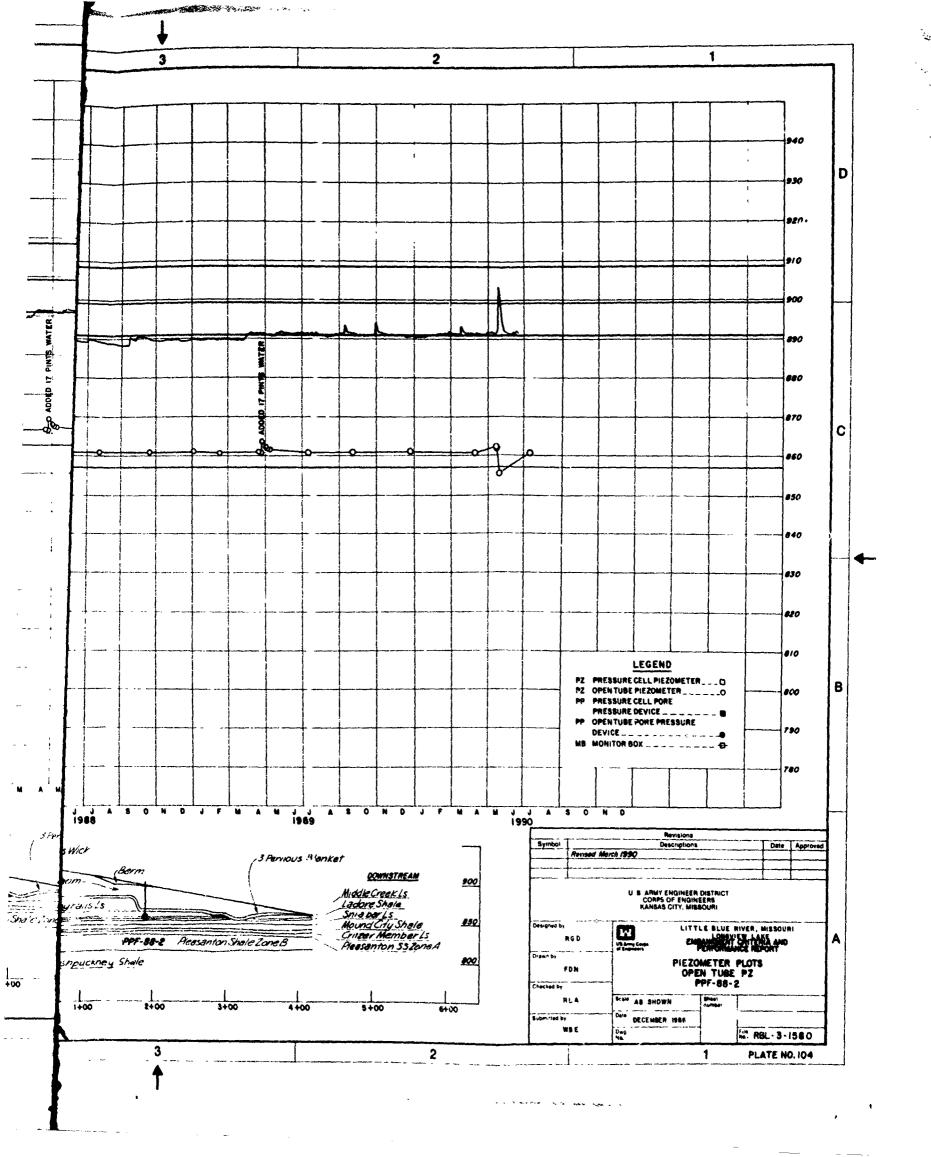


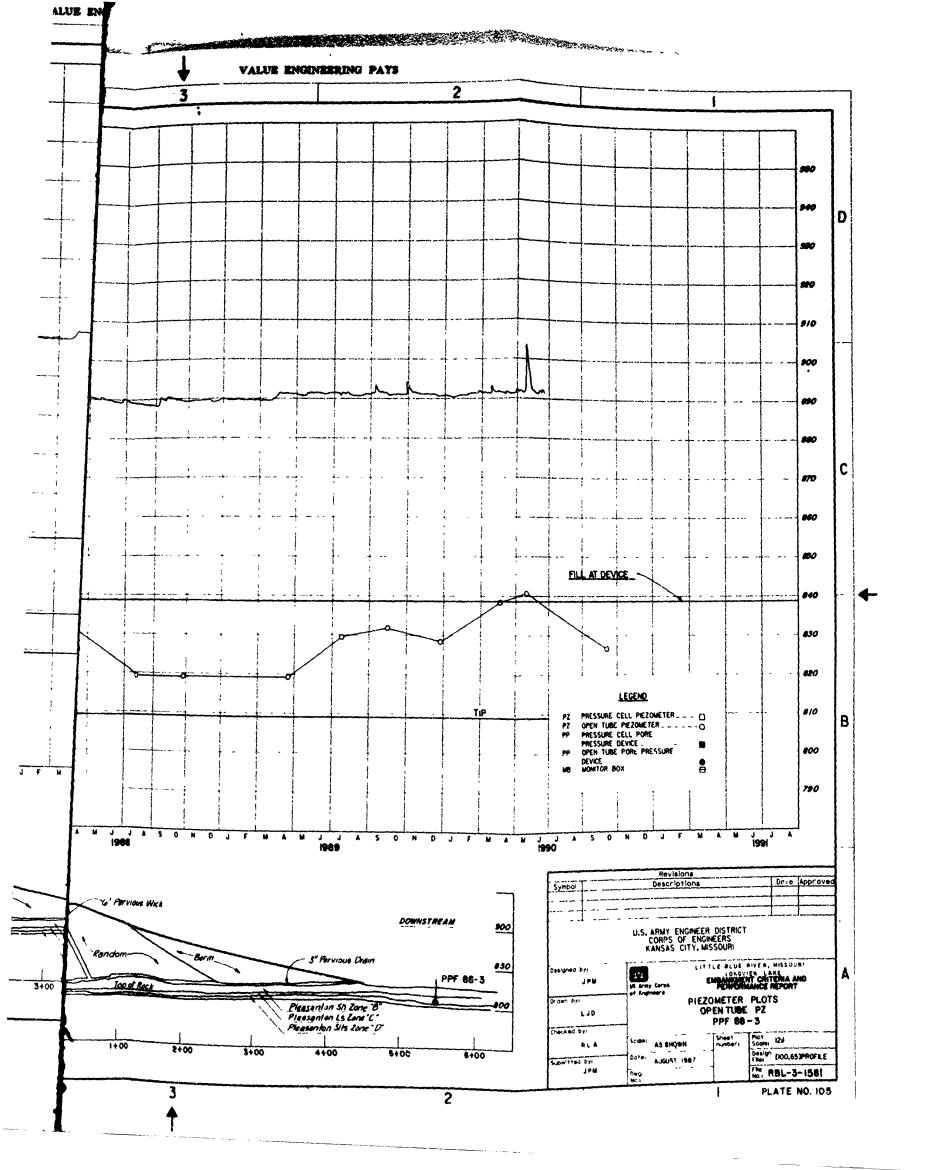


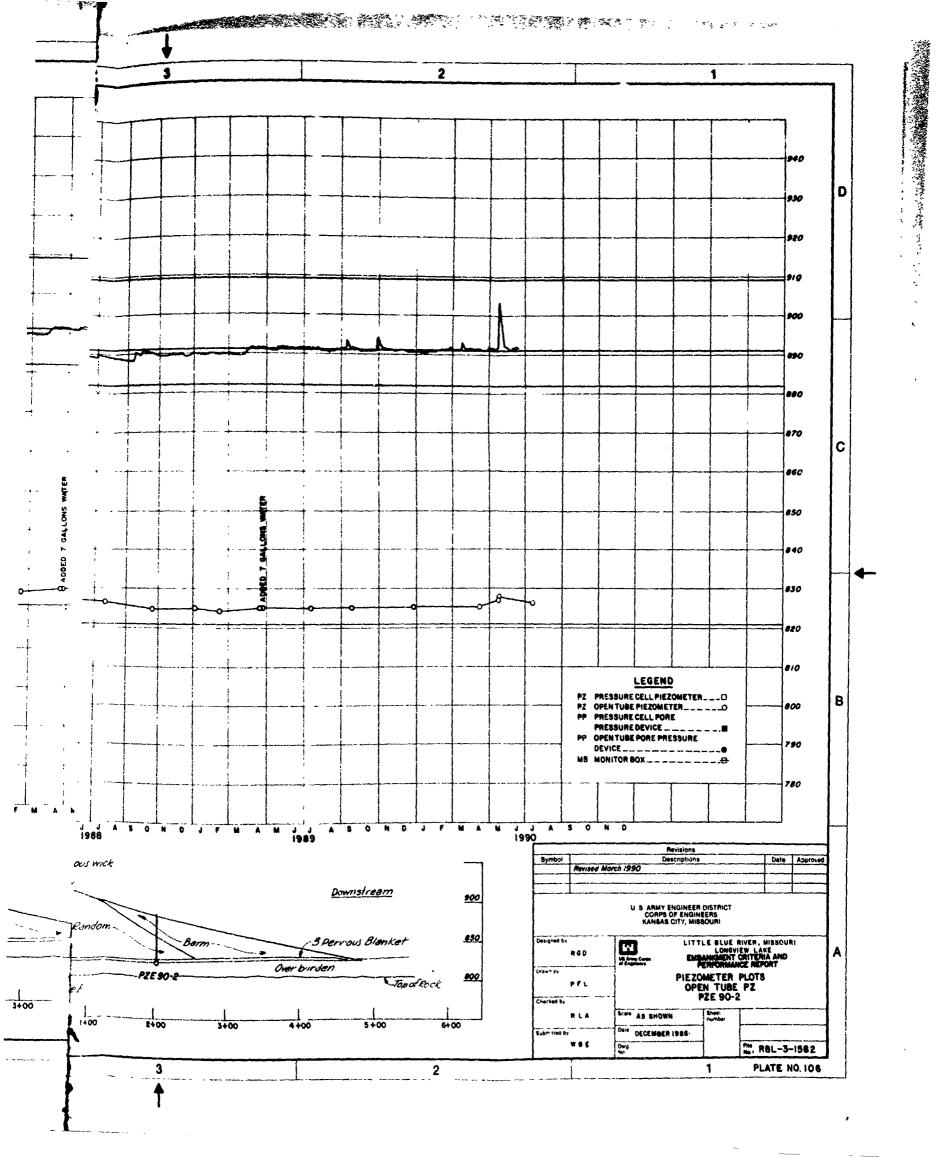

The state of the s

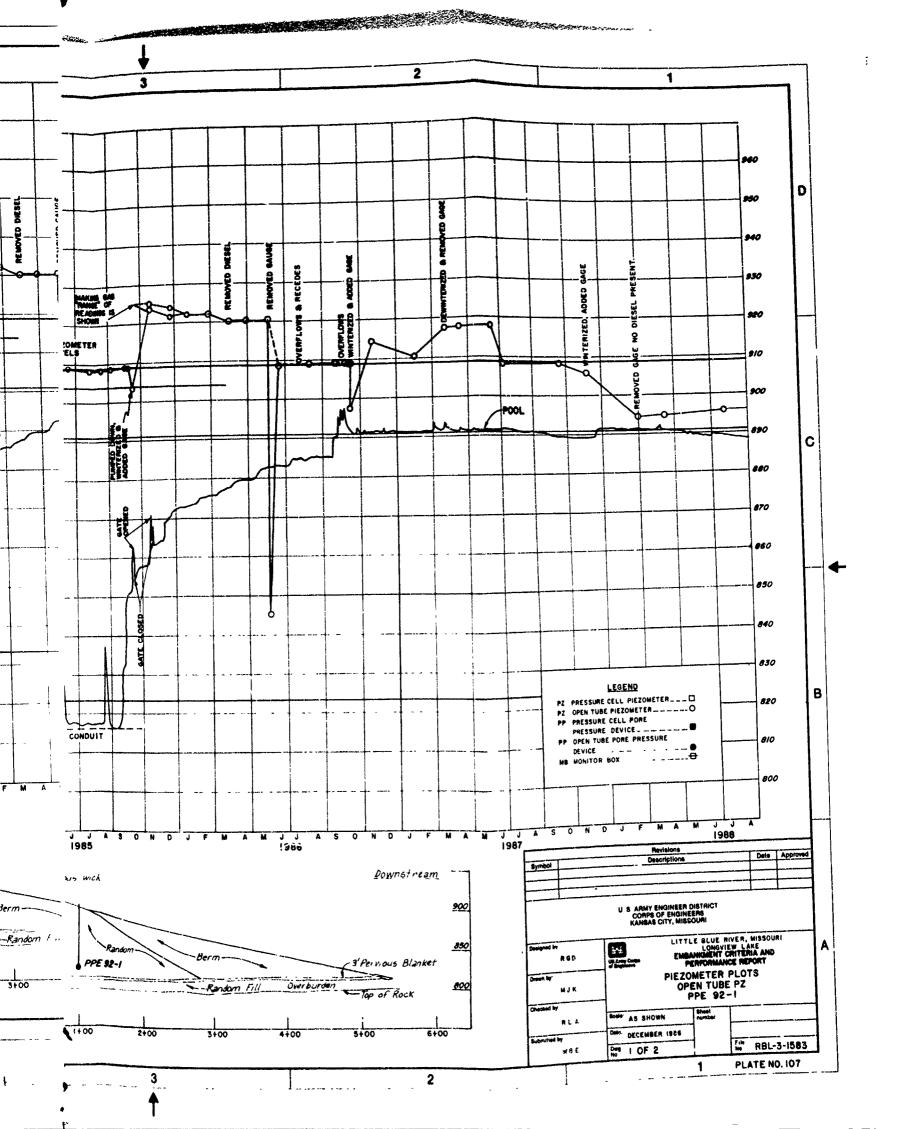


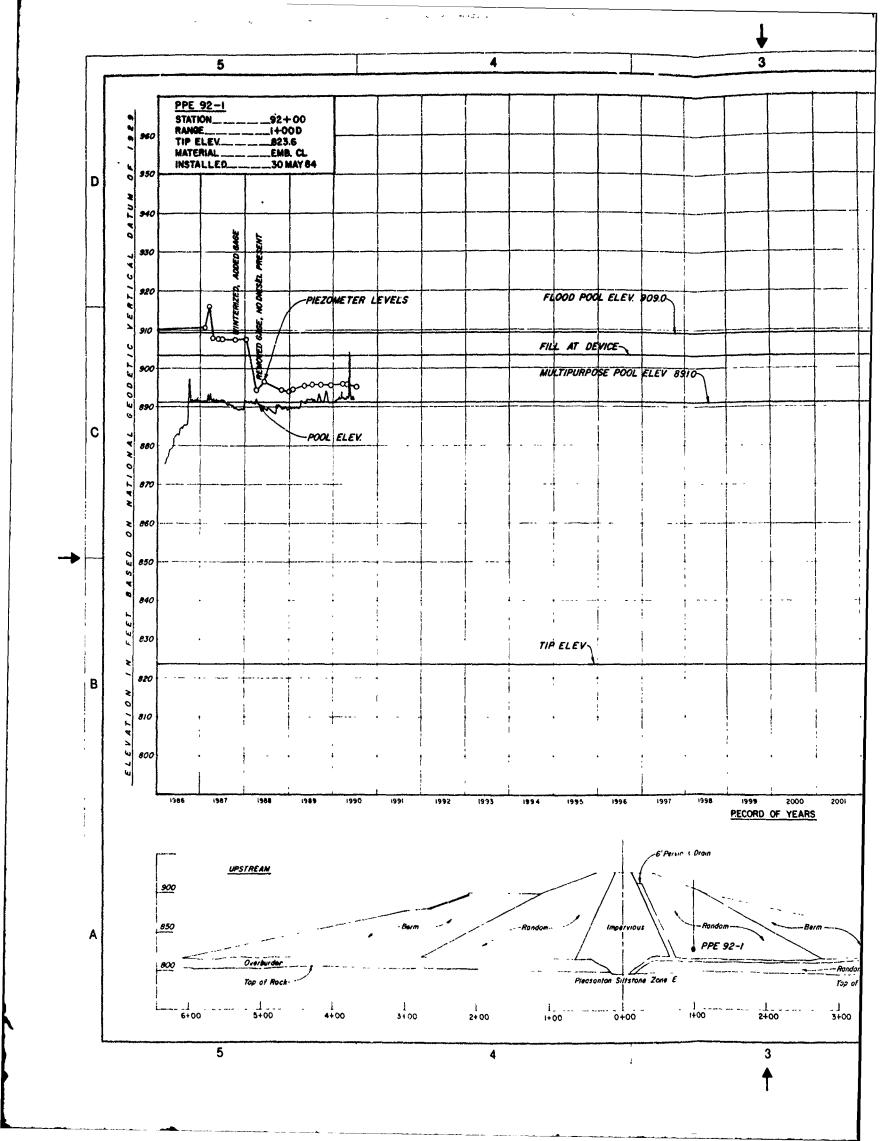


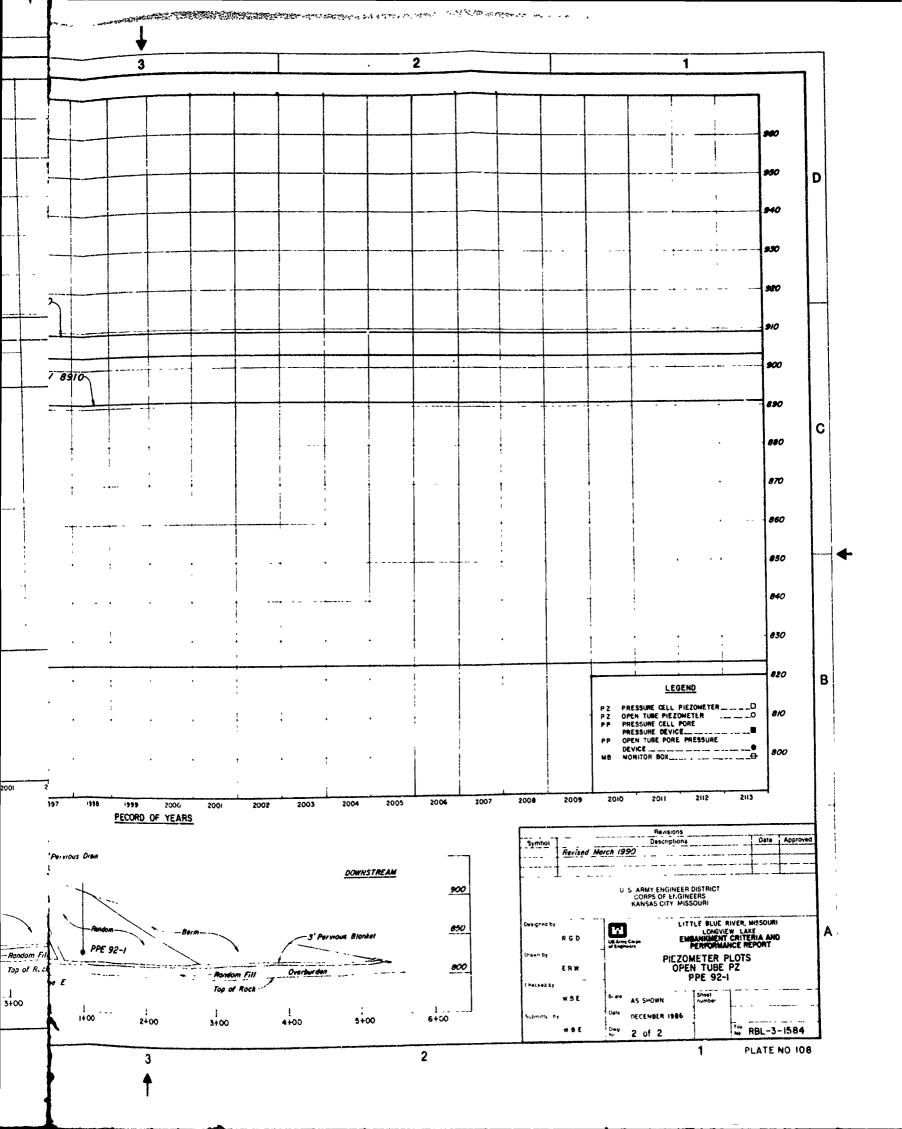


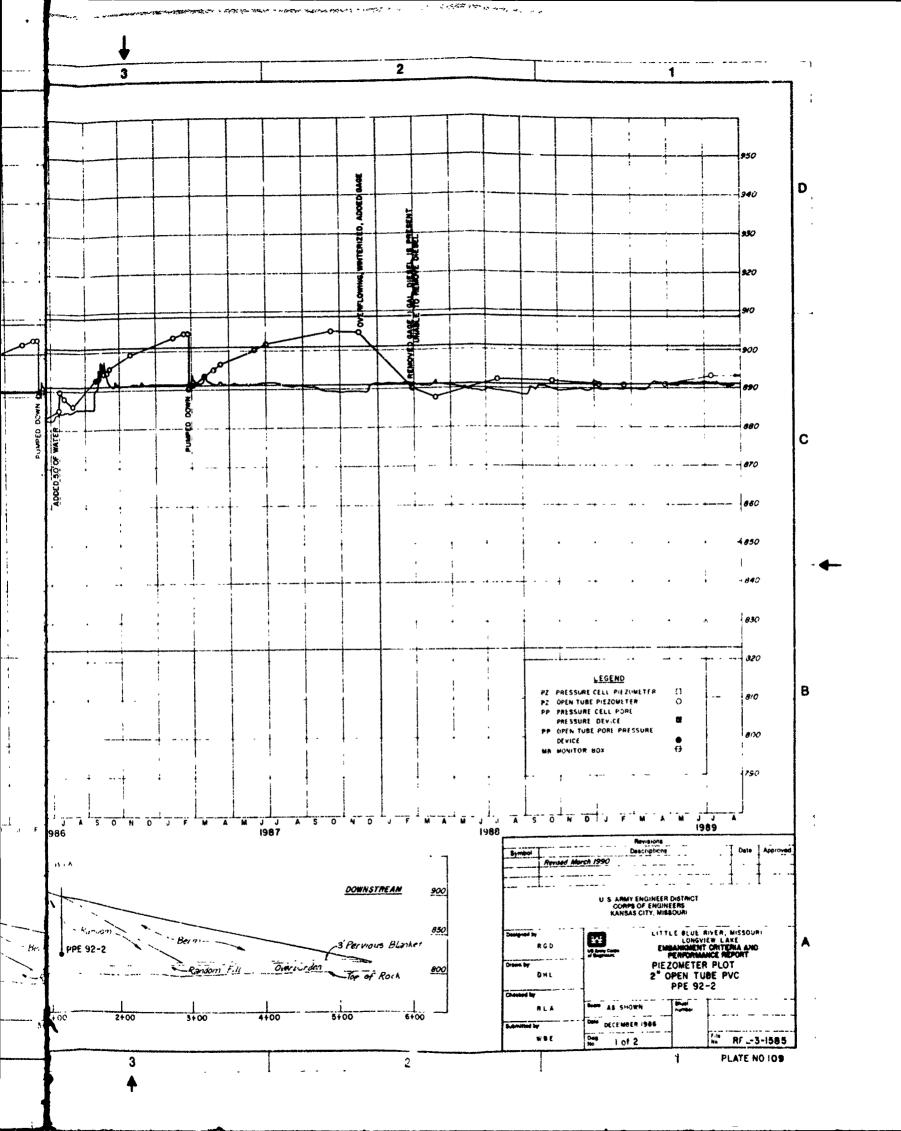


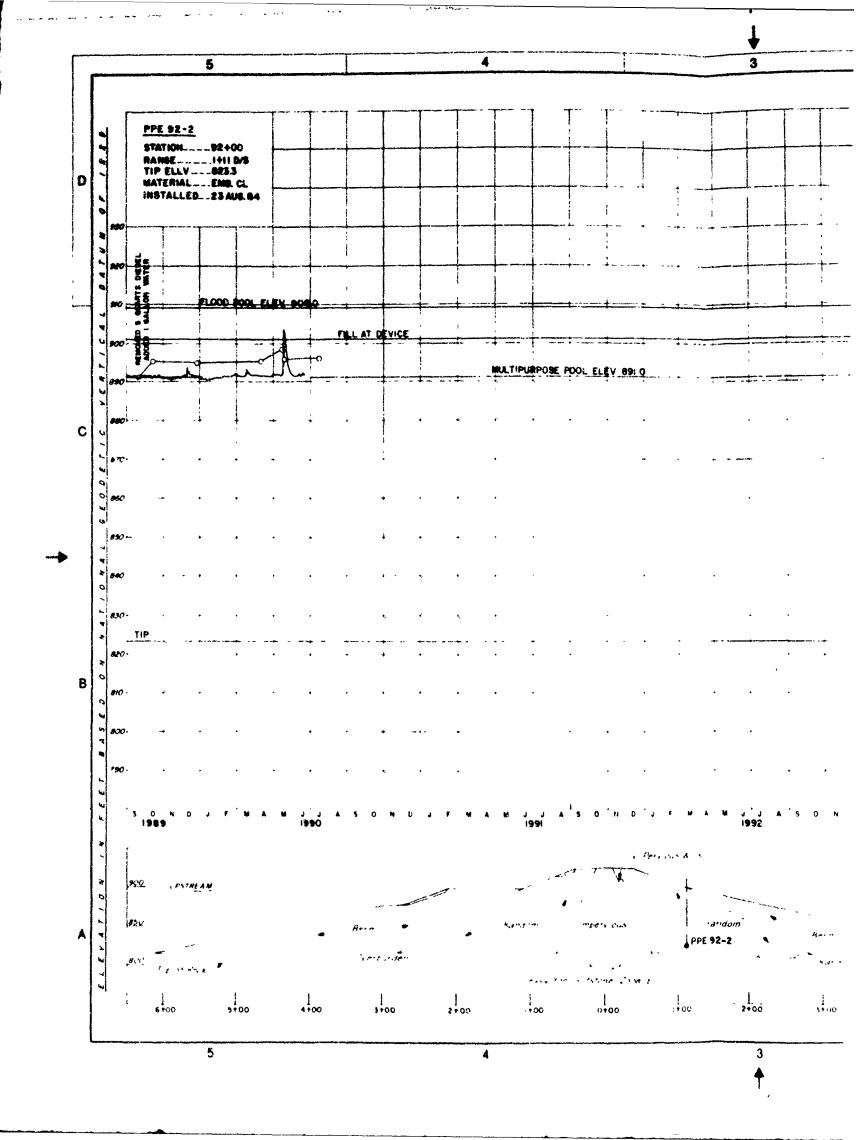











The state of the s

